Дети, мода, аксессуары. Уход за телом. Здоровье. Красота. Интерьер

Для чего нужны синонимы в жизни

Календарь Летоисчисление астрономия

Созвездие телец в астрономии, астрологии и легендах

Правила русской орфографии и пунктуации полный академический справочник Проп правила русской орфографии и пунктуации

Внеклассное мероприятие "Адыгея – родина моя!

Самые правдивые гадания на любовь

Луна таро значение в отношениях

Шницель из свинины на сковороде

Лихорадка Эбола — симптомы, лечение, история вируса

Ученым удалось измерить уровень радиации на марсе Максимальная интенсивность солнечного излучения на поверхности марса

Биография екатерины романовны дашковой Биография дашковой екатерины романовой

Сонник: к чему снится Собирать что-то

Cонник спасать, к чему снится спасать во сне видеть

Чудотворная молитва ангелу-хранителю о помощи

Со свинным рылом да в калашный ряд Минфин придумал для россиян «гарантированный пенсионный продукт»

Способы доказательства теорем и приемы решения геометрических задач. Что такое теорема и доказательство теоремы? Доказательство теоремы Пифагора

Как мы уже говорили, цель нашей книги - подробное изложение математических основ системы шифрования RSA. Разработка ее математического хребта была завершена к концу девятнадцатого века усилиями древнегреческих математиков, Ферма, Эйлера и Гаусса. Однако еще 20 лет назад большинство приложений оставалось неизвестными, а некоторые теоремы, которые мы будем упоминать, появились лишь в последние годы.

Многие из приводимых здесь результатов не будут для Вас новыми. К их числу относятся, например, способ вычисления наибольшего общего делителя, основанный на последовательных делениях, а также простейшие процедуры разложения на простые множители. Новизна может заключаться, однако, в самом подходе, поскольку мы доказываем каждое утверждение, включая и корректность вычислительных процедур, исходя из первичных принципов.

Математика древнего Египта и Месопотамии представляла собой набор правил для решения практических задач. Только ее объединение с греческой философией превратило ее в современную теоретическую науку. Первые греческие математики - Фалес (Thales) и Пифагор (Pythagoras) - были также знаменитыми философами. Представление о том, что математический факт можно доказывать, произросло из взаимодействия с философией. Помимо всего прочего, доказательство - это просто рассуждение, которое выводит некоторое утверждение из других, уже известных. А рассуждать греческие философы любили!

Около 400 года до н. э. греческие математики почувствовали необходимость в более или менее точной формулировке

предположений, лежащих в основе их работы. Поэтому и Эвклид открывает свои «Начала» со строгих определений и аксиом, на которых базируются его доказательства. Например, в начале первой книги он определяет точку, прямую, плоскость, поверхность и т.д. Затем он формулирует аксиомы, истинность которых он считает самоочевидной. Аксиомы объясняют связи между ранее введенными объектами. Затем он показывает, каким образом гораздо более сложные факты об изучаемых объектах сводятся, путем логических рассуждений, к аксиомам. Главное достоинство его подхода состоит в придании основательности всему зданию. Если фундамент достаточно прочный, то и все здание может возноситься высоко без опасения, что оно рухнет под собственным весом.

Математический факт обычно называется теоремой. Это греческое слово исходно означало «наблюдение, теория». Его современное значение «доказываемое утверждение» восходит по меньшей мере к эвклидовым «Началам». Утверждение теоремы часто принимает вид условного утверждения:

если выполняется некоторое предположение, то справедливо некоторое заключение.

Доказательство такой теоремы представляет собой логическое рассуждение, которое показывает, как заключение вытекает из предположения. Приведем пример:

Теорема 1. Если а - четное целое число, то число тоже четное.

Предположение данной теоремы состоит в том, что - четное число, а заключение - в том, что тоже четное. Разумеется, чтобы показать, что заключение вытекает из предположения, мы должны пользоваться базисными свойствами целых чисел. Для придания доказательствам незыблемости, все эти свойства следовало бы подробно перечислить. Нет необходимости говорить, что в элементарной книге, подобной нашей, это невозможно. Вместо этого мы просто делаем вид,

что «базисные свойства» действительно элементарны и Вы их хорошо знаете. Сюда входят, например, правила сложения и умножения целых чисел, а также утверждение о том, что между любыми двумя целыми числами есть лишь конечное множество целых чисел. Воспользуемся этими свойствами для доказательства приведенной выше теоремы.

Доказательство теоремы 1. Предположение теоремы о четности а означает, что а делится на 2, см. § 3.1. Поэтому должно существовать такое число что Возводя в квадрат последнее равенство, получаем

Поэтому число также делится на 2. Другими словами, число четное, что и является заключением теоремы.

Теорема 1 показывает, что из факта четности числа о вытекает, факт четности его квадрата. Обратным к условному утверждению «из А следует В» является условное утверждение «из В следует А». Значит утверждение, обратное к теореме 1, звучит так: если целое число четное, то и а - четное целое число. Заметим, что если само утверждение истинно, то это ничего не говорит нам об истинности обратного утверждения. Например, для истинного утверждения если целое число делится на 4, то оно четное, обратное утверждение ложно: число 6 четное, однако на 4 оно не делится. Если оба утверждения «из А следует В» и «из В следует А» истинны, то мы говорим, что эквивалентны. Эквивалентность обычно записывается в виде: «А выполняется, если и только если выполняется В». Таким образом, мы приходим к следующей теореме.

Теорема 2. Целое число а четное, если и только если тоже четное.

Мы уже доказали, что если о четное, то и тоже четное. Теперь мы должны доказать обратное утверждение. Прежде

Перейти к доказательству, обсудим еще один логический момент. Обозначим отрицание утверждения через не Например, отрицание не утверждения Р: «число а четное» имеет вид «число нечетное». Пусть теперь два утверждения. Утверждение: «из не следует не называется противоположным к утверждению из следует Любое утверждение истинно, если и только если его противоположное тоже истинно. Подобное высказывание выглядит сомнительно только потому, что оно выражено на непривычном языке. Но представим себе следующую историю. Друг, приглашенный Вами на вечеринку, говорит: «Моя машина сломана, однако если ее вовремя починят, то я приеду». Если теперь Ваш друг не приезжает на вечеринку, то Вы заключаете, что его машину вовремя не починили, а это и есть противоположное к утверждению Вашего друга.

Вернемся к доказательству теоремы 2.

Доказательство теоремы 2. Мы уже видели, что если число о четное, то и число четное. Осталось доказать, что если четное, то и о будет четным. Вместо последнего утверждения мы будем доказывать противоположное ему, т.е. утверждение «если число о нечетное, то и нечетное». Однако целое число, не являющееся четным, нечетно. Более того, всякое нечетное целое число представимо в виде «четное . Поэтому для нечетного о существует целое число при котором Возводя в квадрат обе части последней формулы, мы получаем

т.е. тоже нечетное число. Таким образом, утверждение, противоположное к исходному, истинно, а значит, истинно и исходное утверждение, и мы доказали, что если четно, то и о четно.

Теорема 1 была сформулирована в виде «если о четно, то и четно». Это означает, на самом деле, что квадрат любого четного числа четен. Другими словами, мы доказываем

справедливость утверждения для всех четных чисел. Рассмотрим теперь утверждение «всякое четное число делится на 4». Мы снова указываем на общее свойство всех четных чисел, однако на сей раз утверждение оказывается ложным. Почему? Например, потому, что число 6 четное, однако на 4 оно не делится. Таким образом, утверждение о том, что какое-то свойство присуще всем элементам некоторого множества, можно опровергнуть, предъявив элемент, для которого оно не выполняется. Такой элемент называется контрпримером к утверждению.

Не всегда утверждение теоремы записывается в приведенном выше условном виде. Иногда, например, утверждается, что объект с заданными свойствами существует. Так, для любого вещественного числа х существует такое целое число что Самый естественный способ доказательства подобных теорем состоит в предъявлении явного метода для нахождения такого объекта. Если в приведенном выше примере обозначить целую часть числа х через то является целым числом, большим х, и мы можем положить Предположив теперь, что десятичное представление числа х известно, мы легко найдем с помощью описанного метода. Однако подобные утверждения можно доказывать и не указывая способа построения объекта. Такое доказательство называется неконструктивным доказательством существования. Оно не настолько таинственно, как может показаться. Мы знаем, например, что в любой компании из 400 человек есть двое с совпадающим днем рождения, поскольку Хотя такое рассуждение и верно, оно не дает нам способа найти таких двух человек; значит это неконструктивное доказательство существования.

Большинство книг по теории чисел широко используют неконструктивные доказательства даже при наличии

конструктивных. Это не просто вопрос вкуса: часто конструктивные доказательства выглядят гораздо более неуклюже, чем аналогичные доказательства чистого существования, а для математиков элегантность значит не меньше, чем для художников. В этой книге мы будем, однако, по мере сил избегать неконструктивных доказательств. Такой подход объясняется, в первую очередь, тем, что нас интересуют приложения в криптографии. Поэтому не достаточно просто знать, что у составного числа есть нетривиальный множитель, нужно уметь его отыскивать.

Эти краткие заметки должны позволить Вам приступить к чтению. Методы доказательств будут подробнее разобраны ниже, прежде всего в § 3.7 и § 6.2. Однако необходимо с самого начала понять, что искусство доказательства теорем следует заботливо взращивать, и лучший способ выращивания - частое упражнение. Когда Птолемей, царь египетский, спросил Эвклида, нет ли более простого способа изучения геометрии, чем штудирование «Начал», ответ математика гласил: «В геометрии нет царской дороги». Истинное во времена Эвклида, это утверждение сохраняет свою справедливость и по сей день.

Доказательство математического утверждения, как правило, представляет собой цепочку правильных рассуждений, использующих аксиомы и теоремы, справедливость которых установлена ранее. Рассуждение называется правильным, если из истинности всех посылок следует истинность заключения. Пусть высказывания \(A_1,A_2, \ldots,A_n\) - посылки, а высказывание \(A\) - заключение. Рассуждение проводится по схеме \(\frac{A_1,A_2,\ldots, A_n}{B}\) , т.е. из предположений \(A_1,A_2,\ldots,A_n\) следует заключение \(B\) . Это рассуждение является правильным, если формула \((A_1\And A_2\And \ldots\And A_n)\Rightarrow B\) тождественно-истинная, т.е. истинна для любых истинностных значений входящих в нее высказываний \(A_1,A_2,\ldots,A_n,B\) .

Правильным рассуждениям соответствуют, например, схемы:

\(\frac{A\Rightarrow B,A}{B}\) - правило вывода (modus ponens );

\(\frac{A\Rightarrow B,B\Rightarrow C}{A \Rightarrow C}\) - правило силлогизма;

\(\frac{A\Rightarrow B,\lnot B}{\lnot A}\) - правило контрапозиции.

По первой и третьей схемам построены следующие рассуждения:

– если натуральное число \(n\) делится на 4, то оно четное. Число \(n\) делится на 4. Следовательно, число п четное;

– если натуральное число \(n\) делится на 4, то оно четное. Число \(n\) нечетное. Следовательно, число \(n\) не делится на 4.

Оба рассуждения правильные для любых натуральных чисел \(n\) . В самом деле, даже при \(n=1\) , несмотря на кажущуюся противоречивость, имеем правильное рассуждение: "если число 1 делится на 4, то оно четное. Число 1 делится на 4. Следовательно, число 1 четное", поскольку из ложных посылок можно делать какие угодно заключения.

Рассмотрим пример рассуждения по схеме \(\frac{A\Rightarrow B,B}{A}:\)

– если натуральное число \(n\) делится на 4, то оно четное. Число \(\) четное. Следовательно, число \(n\) делится на 4.

При \(n=6\) и \(n=8\) соответственно получаем:

– если натуральное число 6 делится на 4, то оно четное. Число 6 четное. Следовательно, число 6 делится на 4;

– если натуральное число 8 делится на 4, то оно четное. Число 8 четное. Следовательно, число 8 делится на 4.

Оба рассуждения неправильные, хотя заключение второго рассуждения истинно (число 8 действительно делится на 4), т.е. схема \(\frac{A\Rightarrow B,B}{A}\) не соответствует правильным рассуждениям.

Часто вместо доказательства теоремы вида \(A\Rightarrow B\) доказывают истинность некоторого другого утверждения, эквивалентного исходному. Такие формы доказательства называют косвенными. Одним из них является способ доказательства от противного. Чтобы доказать истинность высказывания \(A\Rightarrow B\) предполагаем, что это утверждение ложно. Исходя из такого предположения, приходим к противоречию, а именно доказываем, что некоторое утверждение выполняется и не выполняется одновременно. Отсюда делается вывод о том, что предположение неверно, а исходное высказывание истинно.

Пользуясь описанным способом, докажем утверждение:

если \(n\) нечетное число, то и число \(n^2\) - нечетное.

Предположим противное, т.е. пусть имеется такое нечетное число \(n\) , что число \(n^2\) - четное. Тогда, с одной стороны, разность \(n^2-n\) будет нечетным числом, а с другой стороны, число \(n^2-n=n(n-1)\) заведомо четное, как произведение двух последовательных целых чисел. Получено противоречие, а именно: число \(n^2-n\) является четным и нечетным одновременно. Это доказывает, что сделанное предположение неверно и, следовательно, исходное утверждение справедливо.

Рассмотренная схема доказательства от противного не единственная. Применяются также другие схемы доказательства от противного:

\(\frac{A,\lnot B}{\lnot A}\) или \(\frac{A,\lnot B}{B}\) .

Еще одна схема косвенного доказательства (по закону контрапозиции) основана на эквивалентности двух утверждений \(A\Rightarrow B\) и \(B\Rightarrow \lnot A\) . В самом деле, эти утверждения либо оба истинны, либо оба ложны. Например, высказывания "если идет дождь, то на небе есть тучи" и "если на небе нет туч, то не идет дождь" оба истинны, а высказывания "если на небе есть тучи, то идет дождь" и "если не идет дождь, то на небе нет туч" оба ложны.

Во многих задачах нужно доказать справедливость некоторого утверждения (формулы) для любого натурального числа \(n\) . Непосредственная проверка таких утверждений для каждого значения п невозможна, поскольку множество натуральных чисел бесконечно. Для доказательства таких утверждений (формул) применяется метод математической индукции , суть которого заключается в следующем. Пусть требуется доказать истинность высказывания \(A(n)\) для всех \(n\in \mathbb{N}\) . Для этого достаточно доказать два утверждения:

1) высказывание \(A(n)\) истинно для \(n=1\) . Эта часть доказательства называется базой индукции;

2) для любого натурального \(k\) из того, что высказывание истинно для \(n=k\) (индукционное предположение) следует, что оно истинно и для следующего числа \(n=k+1\) , т.е. \(A(k)\Rightarrow A(k+1)\) . Эта часть доказательства называется индукционным шагом.

Если пункты 1, 2 доказаны, можно сделать вывод об истинности высказывания \(A(n)\) для любого натурального \(n\) .

В самом деле, если высказывание \(A(1)\) истинно (см. пункт 1), то высказывание \(A(2)\) тоже истинно (см. пункт 2 при \(n=1\) ). Поскольку \(A(2)\) истинно, то \(A(3)\) тоже истинно (см. пункт 2 при \(n=2\) ) и т.д. Таким образом можно дойти до любого натурального числа \(n\) , убеждаясь в справедливости \(A(n)\) .

Замечание В.6. В ряде случаев бывает необходимо доказать справедливость некоторого утверждения \(A(n)\) не для всех натуральных \(n\) , а лишь для \(n\geqslant p\) , т.е. начиная с некоторого фиксированного числа \(p\) . Тогда метод математической индукции модифицируется следующим образом:

1) база индукции: доказать истинность \(A(p)\) ;

2) индукционный шаг: доказать \(A(k)\Rightarrow A(k+1)\) для любого фиксированного \(k\geqslant p\) .

Из пунктов 1, 2 следует, что утверждение \(A(n)\) верно для всех натуральных \(n\geqslant p\) .

Пример В.16. Доказать справедливость равенства \(1+3+5+\ldots+(2n-1)=n^2\) для любого натурального числа \(n\) .

Решение. Обозначим сумму первых \(n\) нечетных чисел через \(S_n=1+3+\ldots+(2n-1)\) . Требуется доказать утверждение \(A(n):\) "равенство \(S_n=n^2\) верно для любого \(n\in \mathbb{N}\) ". Доказательство проведем по индукции.

1) Поскольку \(S_1=1=1^2\) , то при \(n=1\) равенство \(S_n=n^2\) верное, т.е. высказывание \(A(1)\) истинно. База индукции доказана.

2) Пусть \(k\) - любое натуральное число. Выполним индукционный шаг \(A(k)\Rightarrow A(k+1)\) . Предположив, что утверждение \(A(n)\) истинно при \(n=k\) , т.е. \(S_k=k^2\) , докажем, что утверждение \(A(n)\) истинно для следующего натурального числа \(n=k+1\) , то есть \(S_{k+1}=(k+1)^2\) . Действительно,

\(S_{k+1}= \underbrace{1+3+5+\ldots+(2k-1)}_{S_k}+ \bigl= S_k+2k+1= k^2+2k+1= (k+1)^2.\)

Поэтому \(A(k)\Rightarrow A(k+1)\) и на основании метода математической индукции заключаем, что высказывание \(A(n)\) истинно для любого натурального \(n\) , то есть формула \(S_n=n^2\) верна для любого \(n\in \mathbb{N}\) .

Пример В.17. Перестановкой из \(n\) чисел называется набор первых \(n\) натуральных чисел, взятых в некотором порядке. Доказать, что количество различных перестановок равно \(n!\) . Выражение \(n!\) (читается " \(n\) факториал") равно \(n!= 1\cdot2 \cdot3\cdot \ldots\cdot (n-1)\cdot n\) . Две перестановки \((i_1,i_2,\ldots,i_n)\) и \((j_1,j_2,\ldots,j_n)\) из \(n\) чисел считаются равными, если \(i_1=j_1, i_2=j_2,\ldots,i_n=j_n\) , а в случае нарушения хотя бы одного из равенств перестановки считаются различными.

Решение. Проведем доказательство методом математической индукции.

1) Для \(n=1\) имеется всего одна перестановка \((1)\) , т.е. \(1!=1\) и утверждение верно.

2) Предположим, что для любого \(k\) количество перестановок равно \(k!\) . Докажем, что количество перестановок из \((k+1)\) чисел равно \((k+1)!\) . В самом деле, зафиксируем число \((k+1)\) на любом месте в перестановке из \((k+1)\) чисел, а первые \(k\) натуральных чисел разместим на оставшихся \(k\) местах. Количество таких перестановок равно количеству перестановок из \(k\) чисел, т.е. \(k!\) по индуктивному предположению. Так как число \((k+1)\) можно было поставить на любое из (к +1) мест в перестановке, заключаем, что количество различных перестановок из \((k+1)\) чисел равно \((k+1)\cdot(k!)=(k+1)!\) . Таким образом, предположив, что утверждение верно для \(n=k\) , удалось доказать, что оно верно для \(n=k+1\) .

Из пунктов 1 и 2 следует, что утверждение верно для любого натурального числа \(n\) .

Замечание В.7. Формальные методы вывода теорем, использующие многочисленные схемы правильных рассуждений, изучаются в математической логике. Как правило, эти методы порождают лишь новые формулировки теорем, отражающих старое содержание. Поэтому для развития математической теории они малоэффективны. Однако, законы математической логики и схемы правильных рассуждений, должны обязательно соблюдаться при изучении любой математической проблемы.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Когда-то геометрия олицетворяла всю математику. Геометрия, как и всякая наука, возникла под влиянием жизненных потребностей. Необходимость повседневного удовлетворения их ставит человека перед целым рядом вопросов о форме окружающих его предметов, вычислениях, связанных с землемерием, строительным делом и т. д. Слово "геометрия" означает "землемерие" и ясно указывает на источник его происхождения.

Имеются вполне достоверные сведения о значительном развитии геометрических знаний в Египте более чем за две тысячи лет до нашей эры. Узкая плодородная полоса земли между пустыней и рекой Нилом ежегодно подвергалась затоплению, и каждый раз разлив смывал границы участков, принадлежавших отдельным лицам. После спада воды требовалось с возможно большей точностью восстановить эти границы, ибо каждый из участков ценился весьма высоко. Это заставило египтян заниматься вопросами измерения, то есть землемерием. Помимо этого, они вели развитую торговлю и поэтому нуждались в умении измерять емкость сосудов. Искусство кораблевождения привело их к астрономическим сведениям. Выдающиеся постройки египтян - пирамиды, которые сохранились до нашего времени, свидетельствуют, что их сооружение требовало знания пространственных форм. Все это указывает на чисто опытное происхождение геометрии.

Но математика росла и развивалась, особенно бурно последние 200 лет. Возникли новые направления: математический анализ, теория множеств, топология, совсем иначе стала выглядеть алгебра. Конечно, развивалась и геометрия, однако некоторые математики начали в последнее время относить ее к числу второстепенных математических направлений. Это мнение нашло свое отражение и в содержании школьных программ по математике, как в США, так и в ряде других стран.

Возможно тот факт, что в школьной программе геометрия занимает одно из последних мест, объясняется тем, что педагоги мало знают о природе геометрии и об успехах, которые были достигнуты ее исследователями. Я имею в виду многие блестящие результаты, такие, как теорема Фейрбаха, теореме Чевы, теорема Менелая и т. д.

Элементарная геометрия – часть геометрии, входящая в элементарную математику. Границы элементарной геометрии, как и вообще элементарной математики, не являются строго очерченными. Говорят, что элементарная геометрия есть та часть геометрии, которая изучается в средней школе; это определение, однако, не только не вскрывает содержания и характера элементарной геометрии, но и никак ее не исчерпывает, так как в не включается обширный материал, лежащий вне школьных программ (например, аксиоматика, сферическая геометрия). можно сказать, что элементарная геометрия есть исторически и, соответственно, логически первая глава геометрии (поскольку из нее развились другие геометрические направления); в свои основах она сложилась в Древней Греции, и изложение ее основ дают уже «Начала» Евклида (3 в. до н. э.). Такое историческое определение закономерно, но и оно также не уточняет общего содержания и характера элементарной геометрии, тем более, что развитие ее продолжается и в настоящее время. Потому определение элементарной геометрии может быть раскрыто и дополнено.

Элементарная геометрия исходит из простейших фигур – точка, отрезок, прямая, угол, плоскость, и основного понятия о равенстве отрезков или углов или вообще о совмещении фигур при наложении, чем определяется их равенство.

Предмет элементарной геометрии составляют:

1) фигуры, определяемые конечным числом простейших фигур;

2) фигуры, определенные тем или иным свойством, формулируемым в исходных понятиях.

Изучаемая в школе геометрия является иллюстрацией метода построения теории, которая получила название аксиоматического метода.

К началу III в. до н. э. в работах древнегреческого ученого Аристотеля была сформулирована идея построения научной теории. Применительно к геометрии ее реализовал Евклид в своей работе «Начала». На основании накопленных к тому времени фактов и знаний он выделил и сформулировал несколько утверждений (постулатов), принимаемых без доказательства, из которых выводились их логические следствия в виде теорем. система Эвклида явилась первым опытом применения аксиоматического метода и просуществовала без изменения до XIX века н. э. Однако она обладала рядом недостатков с современной точки зрения на аксиоматический метод, и на рубеже XIX – XX веков была построена геометрическая система, свободная от этих недостатков.

К середине XIX века, как уже было отмечено, основания евклидовой геометрии оставались на том же уровне, как они были изложены в работах Евклида. Однако общая тенденция к повышению математической строгости во второй половине XIX века побудила многих авторов к пересмотру основ геометрии с целью предложить полную, непротиворечивую, независимую систему аксиом. наибольшее признание среди различных сформулированных систем получила аксиоматика немецкого Давида Гильберта, изложенная в его книге «Основания геометрии» в 1899 г. Ему удалось построить аксиоматику геометрии, расчлененную настолько естественны образом, что логическая структура геометрии становилась совершенно прозрачной: три группы аксиом управляют каждая своим основным отношением – принадлежности, порядка, равенства. Такое расчленение позволило, во-первых, формировать аксиомы кратким и простым образом; во-вторых, исследовать, как далеко можно развить геометрию, если положить в основу не всю аксиоматику, а только ту или иную ее группу. При этом система задавала действительно абстрактную теорию, в которой объекты и отношения между ними – это просто какие-то мыслимые «вещи», про которые известно только то, что они удовлетворяют аксиомам.

Элементарная геометрия включает те вопросы геометрии, которые в своей постановке и решении не включают общей концепции бесконечного множества, но лишь конструктивно определенные множества (геометрические места). Когда говорят, что евклидова геометрия основана, скажем, на системе аксиом Гильберта или на иной, близкой по характеру системе аксиом то забывают, что при введении общих понятий кривой выпуклого тела длины и др. Фактически используют способы образования понятий, вовсе не предусмотренные в аксиомах, а опирающихся на общую концепцию множества, последовательности и предела, отображения или функций. То, что выводится из аксиом Гильберта без таких добавлений, и составляет элементарную часть евклидовой геометрии. Это разграничение можно уточнить в терминах математической логики. Вместе с тем, соответственно такому пониманию элементарной геометрии, можно говорить об элементарной геометрии n-мерного эвклидова пространства, о элементарной геометрии Лобачевского и др. При этом имеются в виду те разделы, теоремы и выводы этих геометрических теорий, которые характеризуются теми же чертами.

Тема моей работы: «Различные доказательства теорем элементарной геометрии не изучаемых в школе». Она рассматривает «именные теоремы, или теоремы великих ученых. Эта тема интересна тем, что доказывая теоремы школьного курса геометрии мы не всегда знаем, что они основаны на доказательстве какой-либо теоремы, доказанной еще в древние времена.

Рассмотрим доказательства именных теорем, не забывая о великих математиках, доказавших их.

1. Чева Джованни (Ceva Giovanni) (3. 3. 1648, Милан,- 13. 12. 1734, Мантуя) - итальянский инженер и математик. Окончил Пизанский университет. Основные работы по геометрии и механике. Доказал (1678) теорему о соотношении отрезков некоторых прямых, пересекающих треугольник (теорема Чевы). Построил учение о секущих, которое положило начало синтетической геометрии; оно изложено в соч. "О взаимно пересекающихся прямых" ("De line is rectis se inuicem secantibus", Mediolani, 1678).

Теорема. Пусть дан треугольник АВС и три прямые, проходящие через его вершины. Прямая, проходящая через его вершинуА, пересекает прямую ВС в точке А1, прямая, проходящая через вершину В пересекает сторону АС в точке В1, прямая, проходящая через вершину С, пересекает сторону АВ в точке С1. Эти прямые проходят через одну точку тогда и только тогда, когда

Доказательство

Необходимость.

Для случая пересекающихся прямых

Рассмотрим треугольник АВВ1 и прямую СС1, которая его пересекает.

По теореме Менелая

Рассмотрим треугольник СВВ1 и прямую АА1, которая его пересекает.

По теореме Менелая

Разделим первое соотношение на второе

Для случая непересекающихся прямых

По теореме Фалеса запишем пропорции: и

Перемножим пропорции: , значит

Достаточность.

По уже доказанному.

Но тогда, что означает, что А и А’ совпадут ч. т. д.

2. Теоре́ма Менела́я - это классическая теорема аффинной геометрии.

Подобный результат в сферической геометрии упоминается в трактате «Sphaerica» Менелая Александрийского (приблизительно 100-ый год нашей эры) и по-видимому, аналогичный результат на плоскости был уже известен. Эта теорема носит имя Менелая, поскольку более ранних письменных упоминаний об этом результате не сохранилось.

Хотя обоих математиков - древнегреческого и итальянского - разделяют 17 веков, теоремы, названные их именами, обладают двойственностью. Если в любой из них заменить прямую точкой и точку прямой, то теорема Менелая станет теоремой Чевы, и наоборот. Полезны они вот почему: те задачи, которые традиционно решаются довольно сложно с помощью аппарата векторной алгебры, решаются буквально в одну строчку с помощью теорем Менелая и Чевы. Это касается и обратных теорем. Доказательство принадлежности трех точек одной прямой решается очень просто с помощью теоремы, обратной теореме Менелая, доказательство того, что три прямые пересекаются в одной точке, так же легко решается с помощью теоремы, обратной теореме Чевы. Это наиболее важное событие в истории геометрии (открытие этих теорем), оказавшее влияние как на процесс развития математики, так и на развитие техники и смежных областей науки!

Теорема. Пусть на прямых BC, CA, AB, содержащих стороны треугольника ABC, даны соответственно точки A", B", C". Для того, чтобы эти точки лежали на одной прямой, необходимо и достаточно, чтобы имело место равенство

Доказательство.

Необходимость.

Проведем BKA"B". Из подобия треугольников CA"/A"B=CB"/B"K; BC"/C"A=KB"/B"A. Тогда AB"/B"C*CA"/A"B*BC"/C"A= =AB"/CB"*CB"/KB"*KB"/AB"=1. Если записать тоже самое в векторах, то с учетом направленности вектора получим требуемое равенство.

Достаточность.

Пусть A", B", C" не лежат на одной прямой, но верно равенство (1). Тогда пусть A"B" пересекается с AB в точке C". Тогда верно равенство (1) и для точек A", B", C". Но тогда при записи равенства один, сокращением на AB"/CB"*CA"/BA" (2), получаем, что BC"/AC"=BC"/AC". Если записать все это в векторах, то получится равенство (2) с векторами. Отсюда C"=C", т. е. A", B", C" лежат на одной прямой.

Если точки A",B" и C" лежат соответственно на прямых BC,CA и AB треугольника, то они коллинеарны, тогда и только тогда когда

Проведем через точку С прямую, параллельую прямой AB, и обозначим через K точку пересечения этой прямой с прямой B"C". Поскольку треугольники и подобны (по двум углам), то и, значит -

С тругой стороны, так как подобными являются также и треугольники и, то и, следовательно -

Но в таком случае

Остаётся заметить возможны два расположения точек A",B" и C", либо две из них лежат на соответствующих сторонах треугольник а одна на продолженни, либо все три лежат на продолжениях соответствующих сторон, отсюда для отношений направленных отрезков имеем ч. т. д.

Теорема. Если стороны ВС, СА, АВ треугольника АВС пересекаются в одной и той же точках a, b,c, то между отрезками, определенными таким образом на сторонах, имеем соотношение:

Доказательство.

Чтобы это доказать, проведем через вершины треугольника до пересечения с трансверсалью (трансверсалью называется любая прямая, пересекающая стороны треугольника) три прямые, параллельные какому-нибудь одному и тому же направлению, на которых установим одно и то же положительное направление.

Пусть α, β, γ – расстояния вершин от трансверсали, считая по проведенным параллельным прямым; имеем

Откуда, перемножая, получим:

Если бы трансверсаль была параллельна стороне ВС, то точку а следовало бы рассматривать как лежащую в бесконечности, а отношение как равное 1. Искомое соотношение обратилось бы при этом в, т. е. в теорему о прямой, параллельной какой-либо стороне треугольника. Если бы две стороны АВ и АС треугольника сделались параллельными, то точка А лежала бы в бесконечности; написав выражение в виде, мы заменили бы через 1 и получили бы теорему о прямой, параллельной одной из сторон треугольника.

Обратная теорема. Если не сторонах ВС, СА, АВ треугольника АВС взяты три точки a, b, c, удовлетворяющие соотношению то эти три точки лежат на одной прямой.

Действительно, прямая ab пересекает сторону АВ в некоторой точке c" так, что имеет место равенство:

Это равенство при сравнении его с предыдущим, показывает, что и что, следовательно, точки с и с" совпадают.

Примечание. Эта теорема, в сущности, сводится к теореме о прямой параллельной какой-либо стороне треугольника. Действительно, можно найти такие три отрезка α, δ и γ (заданные по величине и по знаку), что имеют место равенства:

Откуда в силу соотношения следует

Вследствие этого три попарно гомотетичные фигуры, в которых точки А, В и С будут тремя соответвенными точками и α, δ, γ – тремя соответственными отрезками, будут иметь точки a, b, c центрами подобия.

3. Теорема Фейербаха. Доказанная в 1822 году теорема Карла Вильгельма Фейербаха (1800–1834) утверждает, что окружность девяти точек (окружность, проходящая через середины сторон, основания высот и середины отрезков, соединяющих ортоцентр с вершинами) касается вписанной окружности треугольника и трёх его вневписанных окружностей. Эта теорема - один из самых красивых фактов элементарной геометрии.

Теорема Фейербаха. Окружность Эйлера касается вписанной и вневписанных окружностей.

Доказательство.

Пусть центр вписанной окружности - I, центр вневписанной окружности, касающейся BC - I", точки их касания с BC - L" и L", середины сторон DABC - A", B", C". GH - отрезок, симметричный отрезку BC относительно AI. Т. к. I, I" лежат на AI, BC - внутренняя касательная к этим 2-м окружностям, то GH тоже внутренняя касательная. Пусть GH∩A"B" - M, GH∩A"C" - N. Пусть GH∩BC=P, тогда P лежат на AI. Т. к. GH симметрична BC, то AG=AC, т. е. AI пересекает GC в середине. A"B", как средняя линия пересекает CG в середине, т. е. AI, A"B", CG пересекаются в одной точке. Назовем ее K. Из св-в вневписанной и вписанной окружностей получаем CL"=BL"; L"L"=AB-AC (обозначим вершины так, чтобы AB>AC). A"L"=(AB-AC)/2=BG/2=A"K(ср. лин.). DA"PK~DAPB, т. е. A"M/A"K=BG/BA; DA"CB"~DACB, т. е. BG/BA=A"K/A"B", т. е. A"M/A"K=A"K/A"B". Отсюда A"M*A"B"=A"K2=A"L"2=A"L"2. Из этого соотношения A"M=(c-b)2/(2c). Т. к. c>b, то A"M

4. Птолемей (Птоломей) Клавдий, знаменитый греческий геометр, астроном и физик; жил в Александрии в первой пол. II в. Главный труд "Великое Собрание", более известный в арабск. переводе под назв. "Альмагест". В геометрии имя П. носит теорема о произведении диагоналей вписанного четырехугольника. В астрономии П. дана теория эпициклов для объяснения видимого движения небесн. светил вокруг неподвижной земли (Птолемеева система). Другие соч: "География", "Harmonicorum libri III" (учение о гармонии) вполне сохранились, и "Оптика" (часть и в арабском переводе; в ней содержится учение об отражении и преломлении света); также 3 книги о музыке, важный источник сведений о древней музыке.

Теорема. Для того, чтобы около четырехугольника можно было описать окружность, необходимо и достаточно, чтобы сумма произведений противоположных сторон равнялась произведению его диагоналей.

Доказательство.

Необходимость.

Пусть a=AB; b=BC; c=CD; d=DA; e=AC; f=BD, тогда, пользуясь соотношением Бретшнайдера(В любом четырехугольнике (ef)2=(ac)2+(bd)2-2abcdcos(A+C), где e=AC; f=BD; a=AB; b=BC; c=CD; d=DA, ÐBAC=ÐA; ÐBCD=ÐC.), получаем: (ef)2=(ac)2+(bd)2-2abcdcos(A+C). Т. к. ABCD вписан в окружность, то ÐA+ÐC=180o, т. е. cos(A+C)=-1, т. е. (ef)2=(ac)2+(bd)2+2abcd. Отсюда (ef)2=(ac+bd)2, т. е. ef=ac+bd.

Достаточность.

ef=ac+bd, т. е. (ef)2=(ac)2+(bd)2+2abcd. По соотношению Бретшнайдера (ef)2=(ac)2+(bd)2-2abcdcos(A+C). Отсюда cos(A+C)=-1. Т. к. A+C

Теорема. Сумма произведений противоположных сторон вписанного четырехугольника равна произведению их диагоналей.

Проведем СМ так, чтобыМСD=ВАС.

ΔАВС~ΔDМС

ΔАDС~ΔВСМ

Сложим полученные равенства АВ*DC+BC*AD=AC*DM+AC*BM ч. т. д.

5. Блез Паскаль родился в 1623 г. в провинциальном городке. Блез оказался одарённым блестящим умом. В 14 лет он начал посещать математический кружок (из которого впоследствии выросла Французская академия наук), а в 16 - уже написал работу о конических сечениях («теорема Паскаля»), названную коллегами «наиболее сильным и ценным вкладом в математическую науку со дней Архимеда».

Теорема. У вписанного в окружность шестиугольника точки пересечения противоположных (если они есть) лежат на прямой, называемой прямой Паскаля вписанного шестиугольника.

Доказательство.

Пусть наш шестиугольник - AB"CA"BC". Пусть M=(AB")∩(A"B); P=(BC")∩(B"C); N=(CA")∩(C"A); X=(AB")∩(CA"); P=(BC")∩(CA"); N=(CA")∩(BC"). По свойству секущих XA*XB"=XC*XA" (1); YB*YC"=YC*YA" (2); ZB*ZC"=ZA*ZB" (3). По теореме Менелая к DXYZ и к тройкам точек (A; C"; N); (C; B"; P); (B; A"; M) получаем:

После перемножений данных выражений и применения формул (1); (2); (3) получаем, что:

Отсюда по теореме Менелая следует, что M, N, P коллинеарны.

Теорема. Во всяком шестиугольнике, вписанном в окружность, точки пересечения противоположных сторон лежат на одной прямой.

Доказательство.

Пусть ABCDEF – шестиугольник, противоположные стороны которого AB и DE пересекаются в точке L, стороны BC и EF – в М, стороны CD и FA – в N. рассмотрим треугольник IJK, образованный сторонами AB, CD, EF, другими словами, сторонами данного шестиугольника, взятыми через одну.

Точки L, М, и N расположены соответственно на сторонах JK, KI, IJ этого треугольника. Эти точки лежат на одной прямой, если имеет место соотношение:

Но, если мы пересечем последовательно треугольник IJK каждой из оставшихся сторон DE, BC, FA шестиугольника, мы получим соотношения:

Перемножив почленно эти три равенства, мы можем написать, группируя надлежащим образом множители числителя и знаменателя:

Но каждая из трех последних дробей, которые входят в левую часть, равна 1. Например, произведения CI*DI и EI*FI равны как произведения отрезков, отсеченных окружностью на секущих, выходящих из точки I. Таким образом, получается соотношение и теорема доказана.

Примечание. Предыдущее доказательство остается в силе, если точки A и B, C и D, E и F попарно совпадают и стороны треугольника IJK являются касательными к кругу.

При этом теорема принимает следующую форму: Касательные, проведенные через вершины треугольника, вписанного в круг, пересекают соответствующие стороны в трех точках, лежащих на одной прямой.

6. Жерар Дезарг родился в 1593 году (по другим источникам - в 1591г.). Паскаль называл его старшим свом современником и именно под влиянием работ Дезарга занялся проективной геометрией. В эпоху, когда не существовало еще научных журналов, активность таких математиков как Дезарг находила свое выражение в переписке ученых и деятельности дискуссионных кружков. Он состоял в переписке c Мареном Мерсенном, Декартом, Ферма, Паскалем и многими другими учеными. Из дискуссионных кружков ученых вырастали академии. Свою "теорему Дезарга" о перспективном отображении треугольников он обнародовал в 1648 году. Плодотворность этих идей в полной мере раскрылась лишь в девятнадцатом столетии. Так, Виктора Понселе, ученика Гаспара Монжа, директора Политехнической школы в Париже, в 1813 году привлекла система представлений, которую на два столетия раньше создавал Дезарг. Научные труды Дезарга легли в основу проективной геометрии. Проективно - геометрические идеи Дезарга привлекли интересы ряда ученых.

Теорема. Треугольники А1В1С1 и А2В2С2 расположены на плоскости так, что прямые А1А2, В1В2 и С1С2 имеют общую точку О. Пусть А – точка пересечения прямых В1С1 и В2С2, В – точка пересечения прямых А1С1 и А2С2, С – точка пересечения прямых А1В1 и А2В2. Тогда точки А, В, и С лежат на одной прямой.

Доказательство.

Применим теорему Менелая к треугольнику ОВ1С1 и прямой АВ2С2.

Аналогично для треугольников ОС1А1 и ОА1В1, пересекаемых прямыми ВС2А2 и СА2В2 соответственно.

Перемножив, после сокращений получим

Точки А, В и С лежат на сторонах или продолжениях сторон треугольника А1В1С1 и по теореме Менелая лежат на одной прямой.

Для того, чтобы доказать теорему Дезарга следующим способом надо вспомнить три пространственные аксиомы:

1. Две плоскости определяют одну и только одну прямую; три плоскости, не проходящие через одну прямую, определяют одну и только одну точку.

2. Две пересекающиеся прямые определяют одну и только одну точку и одну и только одну плоскость.

3. Две точки определяют одну и только одну прямую. Три точки, не лежащие на одной прямой, определяют одну и только одну плоскость.

Эта система аксиом остается неизменной, если обменять местами слова «точка» и «плоскость» (при этом первая аксиома поменяется местами с третьей, а вторая останется неизменной).

Теорема. Пусть даны в пространстве два треугольника АВС и А"B"C". Пусть эти треугольники расположены так, что прямые, соединяющие соответствующие вершины, пересекаются в одной точке О. Тогда, во-первых, три пары соответствующих сторон треугольников пересекаются в трех точках R, S, T и, во-вторых, эти три точки лежат на одной прямой.

Доказательство.

Первая часть этой теоремы доказывается весьма просто. Две пересекающиеся прямые АА" и ВВ" определяют согласно второй пространственной аксиоме некоторую плоскость. Но в этой плоскости расположены также прямые АВ и А"В" так, что согласно второй плоскостной аксиоме они пересекаются в некоторой точке R. Остается неопределенным, лежит ли точка R в конечной части пространства или в бесконечности. Существование двух других точек пересечения S и T можно доказать таким же образом.

Вторую часть теоремы легко установить в том случае, когда треугольники расположены в различных плоскостях. Тогда эти плоскости определяют одну – конечную или бесконечно удаленную – прямую пересечения (по первой пространственной аксиоме). Из каждой пары соответствующих сторон треугольника: одна расположена в одной плоскости, другая – в другой. А так как обе стороны пересекаются, то точка их пересечения должна лежать на прямой, принадлежащей обеим плоскостям. Таким образом мы доказали теорему Дезарга для общего случая.

Однако особенно важен как раз тот частный случай, когда оба треугольника лежат в одной плоскости. В этом случае доказательство можно провести при помощи проектирования в пространстве, подобно тому как доказывалась теорема Брианшона. Нам следует только доказать, что всякая плоская дезаргова фигура может быть представлена как проекция некоторой пространственной дезорговой фигуры. Для этой цели соединим все точки и прямые плоской дезарговой фигуры с некоторой точкой S, лежащей вне плоскости фигуры. Далее проведем через прямую АС плоскость; пусть эта плоскость пересекается с прямой ВS в точке В0, отличной от точки S. Затем проведем прямую ОВ0. Эта прямая лежит в одной плоскости с прямой В"S, и таким образом обе прямые пересекаются в точке В0". Но тогда треугольники АВ0С и А"В0"С" образуют пространственную дезаргову фигуру, так как прямые, соединяющие соответствующие вершины, проходят чрез точку О. Линия пересечения плоскостей обоих треугольников изображается при проектировании из точки S в виде прямой на плоскости проекций, причем точки пересечения соответствующих пар сторон рассмотренных первоначально треугольников АВС и А"В"С" должны лежать на этой прямой. Теорема Дезарга доказана полностью.

7. Папп Александрийский греческий геометр. Жил в конце III в. после Рождества Христова, стоял во главе философской школы, о которой, кроме факта ее существования, нет других сведений. Из не дошедших до нас сочинений Паппа известны по имени, а иногда и по некоторым сведениям о содержании: "Замечания" или комментарий на Альмагест Птолемея, комментарий к "Аналемме" Диодора и комментарий к "Элементам" Эвклида. Важнейшим из сочинений Паппа является известное под именем "Собрания" (συναγωγή), излагающее содержание тех математических сочинений, которые особенно ценились современниками.

Теорема. Если на одной прямой взяты точки A1, B1, C1, а на другой - точки A2, B2, C2, то прямые A1B2 и A2B1, B1C2 и B2C1, C1A2 и C2A1 пересекаются в трех коллинеарных точках.

Доказательство.

Пусть прямые A1B2 и A2B1, B1C2 и B2C1, C1A2 и C2A1 пересекаются в точках C, A, B соответственно, а прямые A1B2 и A2C1, B1C2 и B2A1, C1A2 и C2B1 пересекаются в точках A0, B0, C0 соответственно. Теперь применим теорему Менелая к следующим пяти тройкам точек: (A, B2, C1), (B, C2, A1), (C, A2, B1), (A1, B1, C1) и (A2, B2, C2). В результате получим:

После перемножения пяти данных равенств получим, т. е. точки A, B и C коллинеарны.

8. Гаусс Карл Фридрих (1777-1855). С именем К. Ф. Гаусса связаны многие замечательные страницы в истории математики. Он дал доказательство основной теоремы алгебры (всякое алгебраическое уравнение с действительными коэффициентами имеет корень). Гаусс создал теорию поверхностей. До него были изучены геометрии только на двух поверхностях: на плоскости (планиметрия Евклида) и на сфере (сферическая геометрия). Гаусс нашел способ построения геометрии на любой поверхности, определил, какие линии играют на поверхности роль прямых, как мерить расстояния между точками на поверхности и т. д. Теория Гаусса получила название внутренней геометрии. Он не опубликовал своих работ по неевклидовой геометрии и теории эллиптических функций. Эти результаты были открыты заново его младшими современниками: русским математиком Я. И. Лобачевским и венгерским математиком Я. Больяй в первом случае и норвежским математиком Г. X. Абелем и немецким математиком К. Г. Якоби во втором.

Теорема. Для того, чтобы три точки, лежащие на прямых, содержащих стороны треугольника BC, CA, AB (A", B", C" соответственно) были коллинеарны, необходимо и достаточно, чтобы середины отрезков AA", BB", CC" были бы коллинеарными.

Доказательство.

Необходимость.

Пусть M, N, P – середины соответственно AA", BB", CC" соответственно, A", B", C" – середины BC, CA, AB соответственно. По свойству средней линии PAB; MBC; NCA. Также по свойству средних линий имеем: (1).

По теореме Менелая. Пользуясь (1), получаем, что, откуда A", B", C" коллинеарны по теореме Менелая.

Достаточность.

Пусть A", B", C" коллинеарны, тогда по т. Менелая (2). По свойству средних линий имеем: (3). По (2) и (3) получаем, что, т. е. по теореме Менелая A", B", C" коллинеарны.

Изучая данную тему я пришла к заключению, что данные теоремы в основном рассматривают геометрию треугольника. И многие имена остались в истории математики только благодаря этим теоремам. Геометрия треугольника – это основа всей планиметрии. Теоремы сложны в доказательствах и восприятии, но на основе этих теорем доказываются многие теоремы школьного курса планиметрии и решаются практические задачи.

Аксиома есть очевидная истина, не требующая доказательства .

Теорема или предложение есть истина, требующая доказательства .

Доказательство есть совокупность рассуждений, делающих данное предложение очевидным .

Доказательство достигает своей цели, когда при помощи его обнаруживается, что данное предложение есть необходимое следствие аксиом или какого-нибудь другого предложения, уже доказанного.

Всякое доказательство основано на том начале, что при правильном умозаключении из истинного предложения нельзя вывести ложного заключения.

Состав теоремы . Всякая теорема состоит из двух частей, a) условия и b) заключения или следствия .

Условие иногда называют предположением. Оно дано и поэтому иногда получает название данного.

Обратная теорема . Предложение, у которого заключение данной теоремы делается условием, а условие заключением, называется теоремой обратной данной .

В таком случае данная теорема называется прямой.

Две теоремы в совокупности, прямая и обратная, называются взаимно-обратными теоремами.

Они находятся в таком взаимном отношении, что, выбрав любую из них за прямую, можно другую принять за обратную.

В двух взаимно-обратных предложениях одно из них вытекает как необходимое следствие другого.

Если в теореме мы обозначим условие буквой, стоящей на первом месте, а заключение буквой, стоящей на втором месте, то прямую теорему можно схематически представить выражением (Aa), а обратную выражением (aA).

Выражение (Aa) схематически представляет предложение: если имеет место A, то имеет место a.

Если для данного предложения (Aa) имеет место и теорема (aA), то обе теоремы (Aa) и (aA) называются взаимно-обратными теоремами.

Примером двух таких взаимно-обратных теорем могут послужить теоремы:

Первая теорема . В треугольнике против равных сторон лежат равные углы .

Вторая теорема . В треугольнике против равных углов лежат равные стороны .

В первой теореме данным условием будет равенство сторон треугольника, а заключением равенство противолежащих углов, а во второй наоборот.

Не всякая теорема имеет свою обратную.

Примером арифметического предложения, не имеющего своего обратного, может послужить следующая теорема . Если в двух произведениях множители равны, то и произведения равны .

Обратное предположение несправедливо. Действительно, из того, что произведения равны, не следует, что множители равны.

Примером геометрического предложения, для которого обратное предложение не имеет места, может послужить теорема : во всяком квадрате диагонали равны .

Предложение обратное этому будет: если диагонали четырехугольника равны, то он будет квадратом.

Это предположение неверно, ибо диагонали бывают равными не в одном квадрате.

Так как обратное предположение не всегда справедливо, то каждый раз обратное предложение требует особого доказательства.

В теории геометрических доказательств весьма важно иногда знать, когда данное предложение допускает свое обратное.

Для этой цели может послужить следующее правило обратимости . Когда в предположении всем возможным и различным условиям соответствуют все возможные и различные заключения, обратное предложение имеет место.

Рассмотрим для примера.

Прямое предложение . Если два треугольника имеют по две равные стороны, то третья сторона будет больше, равна или меньше третьей стороны другого треугольника, смотря по тому, будет ли угол между равными сторонами больше, равен или меньше соответствующего угла другого треугольника.

В этом предложении трем различным и возможным предположениям об угле соответствуют три различных и возможных заключения о противолежащей стороне, поэтому, согласно с правилом обратимости, данная теорема допускает обратное предположение :

Когда два треугольника имеют по две равных стороны, угол между ними будет больше, равен или меньше соответствующего угла другого треугольника, смотря по тому, будет ли третья сторона больше, равна или меньше третьей стороны данного треугольника.

Кроме обратной прямая теорема может иметь свою противоположную.

Противоположная теорема есть такая, в которой из отрицания условия вытекает отрицание заключения .

Противоположная теорема может иметь свою обратную.

Чтобы обобщить все эти теоремы, мы их представим схематически в следующей общей форме:

    Прямая или основная теорема. Если имеет место условие или свойство A, то имеет место заключение или свойство B.

    Обратная . Если имеет место B, то имеет место A.

    Противоположная . Если не имеет места A, то не имеет места B.

    Обратная противоположной . Если не имеет места B, то не имеет места A.

Следующие примеры поясняют на частных случаях взаимное отношение этих теорем:

    Прямая теорема . Если при пересечении двух данных прямых третьей соответственные углы равны, то данные прямые параллельны.

    Обратная теорема . Если две прямые параллельны, то при пересечении их третье, соответственные углы равны.

    Противоположная . Если при пересечении двух прямых третьей соответственные углы не равны, прямые не параллельны.

    Обратная противоположной . Если прямые не параллельны, соответственные углы не равны.

При геометрическом изложении теорем достаточно доказать только две из этих трех теорем, тогда остальные две теоремы справедливы без доказательства.

На этой связи теорем основан прием, по которому для доказательства обратной теоремы ограничиваются часто только доказательством теоремы противоположной.

Способы геометрических доказательств

Для доказательства геометрических теорем существует два основных способа: синтетический и аналитический .

Эти методы называют иногда сокращенно синтезом и анализом .

Синтез есть такой метод доказательства, в котором данное предложение является необходимым следствием другого, уже доказанного .

В синтезе цепь доказательств начинается с какого-нибудь известного предложения и оканчивается данным предложением. При доказательстве исходное предложение сопоставляется с аксиомой или с другим уже известным предложением. Синтетический способ удобен для вывода таких новых предложений, которые заранее не обозначены. Для доказательства же данного предложения он представляет много неудобств. В нем не видно: a) какую из известных теорем нужно выбрать для того, чтобы доказываемое предложение вытекало как ее необходимое следствие, и b) какое из следствий выбранного предложения приводит к доказываемому предложению.

Синтез называют поэтому не методом открытия новых истин, а методом их изложения.

Впрочем и при самом изложении теорем методом синтетическим является неудобство в том отношении, что не видно, почему за исходную истину в цепи доказательств выбрано то, а не другое предложение, то, а не другое его следствие.

Примером синтетического способа доказательства может послужить следующая теорема.

Теорема . Сумма углов треугольника равна двум прямым .

Дан треугольник ABC (черт. 224).

Требуется доказать, что A + B + C = 2d.

Доказательство . Проведем прямую DE параллельную AC.

Сумма углов, лежащих по одну сторону прямой, равна двум прямым, следовательно,

α + B + γ = 2d

то, заменяя в предыдущем равенстве углы α и γ равными им углами, имеем:

A + B + C = 2d (ЧТД).

Здесь исходным предложением в цепи доказательств выбрана теорема о сумме углов, лежащих по одну сторону прямой.

Она поставлена в связь с теоремами о равенстве углов накрест-лежащих при пересечении двух параллельных третьею косвенною.

Доказываемая теорема есть необходимое следствие всех предложенных теорем и является в цепи доказательств последним заключением.

Анализ есть способ обратный синтезу. В анализе цепь рассуждений начинается доказываемой теоремой и оканчивается какой-нибудь другой уже известной истиной .

Анализ является в двух видах. От доказываемого предложения мы можем перейти к предложению, служащему его ближайшим основанием или его ближайшим следствием.

Переходя от данного предложения к предложению, служащему его ближайшим основанием, мы смотрим на данное предложение как на необходимое следствие.

Переходя от данного предложения к его ближайшему следствию, мы смотрим на данное предложение как на основание для цепи умозаключений.

Первый способ анализа . Совершая анализ переходом к основанию, отыскивают то первое ближайшее предложение, из которого данное вытекает как необходимое следствие. Если это предложение было прежде доказано, то доказано и данное предложение, если же нет, то отыскивают второе предложение, служащее основанием для первого.

Такой переход к основанию следует продолжать до тех пор, пока не дойдем до предложения вполне доказанного. Данное предложение явится как необходимое следствие последнего доказанного предложения.

Обозначая каждое предложение буквой и ставя ее впереди или позади другой, смотря по тому, будет ли оно служить основанием или следствием другого предложения, мы схематически можем этот прием анализа выразить в виде

где M есть данное предложение, L его ближайшее основание, а H предложение, вполне доказанное. Если верно предложение H, то верно предложение K; если верно K, то верно L; если верно L, то верно и M.

Второй способ анализа состоит в переходе от данного предложения к его следствию. Этот прием применяют чаще, потому что легче находить необходимое следствие, нежели отыскивать основание какой-нибудь истины. По этому способу выводят из данного предложения ту теорему, которая служит его ближайшим следствием. Если это следствие есть предложение прежде доказанное, то на нем и останавливаются; если же нет, переходят к следующему ближайшему следствию и вообще продолжают такой последовательный вывод следствий до тех пор, пока не дойдут до предложения, вполне доказанного.

Если последнее предложение не верно, то и данное не верно, ибо неверное следствие нельзя получить из верного предложения.

Если же последнее предложение верно, то для убеждения в верности данного предложения требуется, чтобы были соблюдены некоторые условия.

Схематически этот прием анализа можно представить в виде

M - N - O - P - Q - R - S

где M данное предложение, N предложение, служащее его ближайшим следствием, а S то последнее предложение, в справедливости которого мы вполне убеждены.

Из двух предложений R и S, стоящих в такой связи, что если справедливо R, то справедливо и предложение S, мы, как известно, не всегда можем обратно заключать, что если справедливо S, то справедливо и предложение R.

Чтобы последнее заключение имело место, требуется, чтобы теоремы R и S были взаимно-обратными предложениями.

Итак, для того, чтобы убедиться, что теоремы R и S стоят в такой связи, что она удовлетворяет схеме R - S и схеме S - R, требуется доказать, что предложения R и S взаимно-обратны.

Таким образом, чтобы можно было по верности последнего предложения S заключить о верности данного предложения M, требуется доказать, что каждые два рядом стоящие предложения R и S, P и R, O и P, N и O, M и N удовлетворяют закону обратимости.

Если это доказано, то цепь предложений можно обратить, и рядом со схемой M - N - O - P - Q - R - S справедлива и схема

S - R - Q - P - O - N - M

по которой мы имеем право заключить, что если справедливо предложение S, то справедливо и предложение M.

Так как затруднительно всякий раз доказывать обратимость двух предложений, то этого избегают, соединяя способ аналитический с синтетическим. После того, как из предложения M выведено предложение S как его следствие, смотрят, нельзя ли обратно вывести предложение M как необходимое следствие предложения S.

Если синтез есть способ, называемый дедукцией или выводом , то анализ можно назвать редукцией (приведение, наводка).

Примером аналитического способа доказательства может послужить следующая теорема.

Теорема . Диагонали параллелограмма пересекаются пополам.

Доказательство . Если диагонали пересекаются пополам, то треугольники AOB и DOC равны (черт. 225). Равенство же треугольников AOB и DOC вытекает из того, что AB = CD как противоположные стороны параллелограмма и ∠α = ∠γ, ∠β = ∠δ как накрест-лежащие углы.

Таким образом мы видим, что последовательно данное предложение заменяется другим и такое замещение совершается до тех пор, пока не дойдем до предложения уже доказанного.

Сравнение синтеза с анализом . Способ аналитический вернее ведет к доказательству данной теоремы, ибо от данной теоремы легче переходить к его ближайшему основанию или следствию.

Хотя анализ лучше синтеза объясняет, почему выбран тот или другой путь для доказательства теоремы, однако неопределенность при доказательствах не устраняется вполне в том смысле, что при последовательных заменах одного предложения другим, мы не всегда можем дойти до предложения нам известного, ибо иногда не видно, какое из следствий или какое из оснований данного предложения нужно выбрать для того, чтобы его доказать. Затруднения увеличиваются еще больше, когда приходится для доказательства проводить новые вспомогательные прямые. Иногда трудно дать верные указания, какие из них облегчают доказательство данной теоремы.

Анализ, как и все логические приемы, только облегчает и помогает находить доказательство данного предложения, но не всегда необходимо ведет к самому доказательству.

Кроме этих прямых существует непрямой способ доказательства, известный под именем доказательства от противного или способа приведения к нелепости.

Способ доказательства от противного состоит в том, что для доказательства данного предложения убеждают в невозможности предположения противоположного .

На этом основании это доказательство называется доказательством от противного. Оно достигает своей цели всякий раз, когда из двух предложений, данного и противоположного, одно непременно имеет место.

В этом случае для доказательства данного, допустив противоположное предложение, выводят из него такие следствия, которые противоречат аксиомам или теоремам, уже доказанным. Если одно из следствий этого предложения ложно, то и противоположное предложение ложно, а следовательно данное предложение справедливо.

Этот прием часто применяют для доказательства теорем обратных или противоположных данным.

Не трудно заметить, что этот способ есть второй способ анализа, в котором от данного предложения последовательно переходят к его следствиям.

Примером применения такого способа может послужить приведенное выше доказательство теоремы: против равных углов в треугольнике лежат равные стороны (теорема 26).

В геометрии также применяют способы, зависящие от самого содержания геометрических истин. Геометрические истины относятся к геометрическим протяжениям. Эти протяжения обладают определенными свойствами, подлежащим внешним чувствам. Геометрическое протяжение может рассматриваться как целое, доступное наблюдению внешними чувствами. Убедительности доказательства содействует и самое чувственное созерцание. Обойтись без него в геометрии невозможно.

К числу приемов, имеющих место в геометрии, принадлежат: способ наложения, способ пропорциональности и способ пределов .

Способ наложения состоит в том, что одну геометрическую величину накладывают на другую . Этим способом убеждаются в равенстве или неравенстве геометрических протяжений, смотря по тому, совмещаются или не совмещаются ни при наложении.

Способ пропорциональности состоит в применении к геометрическим протяжениям свойств пропорций . Этот способ применяется при доказательстве теорем, относящихся к подобным фигурам и к пропорциональным отрезкам.

Способ пределов состоит в том, что вместо данных протяжений рассматривают свойства протяжений близких по своим свойствам к данному, и выводы, получаемые из рассмотрения одних, применяют к другим сходным протяжениям.

Способы решения геометрических задач

При решении геометрических задач синтез и анализ применяют точно так же как и при доказательстве теорем.

Решая задачу синтетически, берут такую другую задачу, которую умеют решить, потом из ее решения выводят решение следующей задачи, как ее необходимое следствие, и поступают так до тех пор, пока не доходят до решения данной задачи.

Синтетический метод решения задачи обладает всеми теми же недостатками, какими обладает и синтетический метод доказательства.

Поэтому чаще и успешнее для решения задач применяют анализ.

При решении задачи анализом заменяют данную задачу новой. Эту новую задачу будем называть заменяющей .

Если две задачи находятся в таком отношении, что условия второй есть необходимые следствия условий первой, то первую задачу будем называть начальной , а вторую - производной .

При анализе существуют два способа.

Первый способ . Заменяющую задачу выбирают так, чтобы условия данной задачи вытекали как необходимое следствие условий новой заменяющей задачи, т. е. по нашей терминологии от данной задачи переходят к первой начальной задаче. Если решение этой задачи известно, то решение данной является как необходимое следствие решения начальной задачи. Если же ее решение неизвестно, то от нее переходят ко второй, третьей начальной задаче и продолжают так поступать до тех пор, пока не получат задачу, решение которой известно.

Решив эту последнюю задачу, вместе с этим последовательно доходят и до решения данной задачи.

Второй способ . Можно переходить от данной задачи к такой другой, условия которой являются следствием условий данной, т. е. от данной задачи переходят к ее производной.

Заменяя таким образом последовательно одну задачу другой ее производной, мы можем дойти до задачи, решение которой уже известно. Решение этой задачи дает иногда возможность решить и данную задачу.

Такой переход от данной задачи к ее производной применяют чаще, ибо переходить к следствию легче, нежели подыскивать основание для какой-нибудь истины.

В этом частном случае анализа обыкновенно полагают, что задача решена, и из этого предположения выводят соотношения, дающие возможность решить данную задачу.

При переходе от данной задачи к ее заменяющей весьма важно обращать внимание на то, будут ли две задачи обладать свойством взаимной обратимости. Эта взаимность в условиях двух задач является тогда, когда одна задача, будучи начальной для другой, может быть в то же время и ее производной; иначе когда две задачи находятся в таком отношении, что условия одной могут быть и необходимыми следствиями другой и наоборот.

Если две задачи, данная и новая, обладают такими свойствами, то новая задача вполне заменяет данную. В этом случае все решения одной будут и решениями другой.

Если же условия двух задач не обладают свойствами взаимной обратимости, то, заменяя данную задачу новой, мы можем найти или лишние решения или иметь некоторые из решений потерянными.

Если заменяющая задача будет производной для данной, то мы можем найти некоторые лишние решения; если же она будет начальной для данной, то мы можем найти некоторые решения потерянными.

Так как чаще от данной задачи переходят к задаче производной, то чаще приходится получать решения лишние.

Чтобы отделить лишние решения и отыскать потерянные, поверяют все найденные решения.

Поверка есть способ отделения посторонних (лишних) решений . Она дополняет анализ.

Аналитическое решение задачи указывает на то построение, которое нужно сделать для решения задачи. Совершая это построение, поступают при решении задачи способом обратным анализу, т. е. прибегают к синтетическому способу. Этот синтетический способ часто может заменить и самую поверку найденных решений.

Совместное применение синтеза и анализа дает средство избегнуть тех ошибок, которые могут получиться при применении только одного из этих методов решения.

Решим одну и ту же задачу синтетически и аналитически. Для примера может послужить следующая задача.

Задача . Разделить данный отрезок AB в крайнем и среднем отношении.

Решение . Восставим из конца отрезка AB перпендикуляр BO равный половине AB (черт. 226). Из центра O опишем окружность радиусом BO, соединим центр O с точкой A и отложим на отрезке AB отрезок AC равный AD, тогда отрезок AC или AD будет искомый.

Доказательство . Прямая AB - касательная к окружности, следовательно

откуда имеем:

(AE - AB)/AB = (AB - AD)/AD

Так как DE = AB и AD = AC, то в предыдущей пропорции имеем:

AE - AB = AE - DE = AD = AC
AB - AD = AB - AC = BC

откуда имеем пропорцию

Это решение синтетическое. В нем мы отправляемся от известной теоремы о свойствах касательной и решение данной задачи вытекало как необходимое следствие этой теоремы.

Решение аналитическое . Допустим, что задача решена, а следовательно и отрезок AC найден, тогда

AB/AC = AC/CB (1)

(AB + AC)/AB = (AC + CB)/AC

(AB + AC)/AB = AB/AC (2).

Из последней пропорции видно, что AB есть касательная, AB + AC пересекающаяся, AC ее внешний и AB внутренний отрезок.

Отсюда вытекает и само построение . Нужно из конца B восставить перпендикуляр равный ½AB, провести окружность, соединить O с A и отложить на отрезке AB часть AC = AD.

В этом аналитическом решении мы данную задачу, удовлетворяющую условию (1), заменяем задачей, удовлетворяющей условию (2).

Условие (2) указывает и путь для решения самой задачи построением.

Обыкновенно, найдя решение задачи способом аналитическим, совершают построение, в котором, применяя способ рассуждений синтетический, доказывают, что это построение действительно разрешает задачу и этим доказательством заменяют поверку, имеющую в виду устранить посторонние решения.

В данном примере между задачами, удовлетворяющим условиям (1) и (2), существует полная обратимость, ибо из условий (1) вытекают условия (2) как необходимое следствие и наоборот, поэтому здесь нет ни потерянных, ни посторонних решений.

Исследование второстепенных и вспомогательных приемов решения задач еще не достигло в своей обработке полной и совершенной законченности. Мы пока устраняемся от их подробного рассмотрения.

Значительно труднее научиться доказывать теоремы. При этом речь идет не о запоминании доказательства той или иной теоремы, которая была рассмотрена на уроке. Специально запоминать доказательство не нужно, нужно научиться самому доказывать теоремы.

Что значит доказать теорему, что такое доказательство? Доказательство в широком смысле - это логическое рассуждение, в процессе которого истинность какой-либо мысли обосновывается с помощью других положений. Поэтому, когда вы убеждаете своего товарища в чем-либо или отстаиваете в споре с ним свое мнение, свою точку зрения, то вы по существу производите доказательство (умело или неумело - это уже другой вопрос). В жизни все время, каждодневно в общении с другими людьми, приходится доказывать те или иные мысли, утверждения, приходится убеждать в чем-то, т. е. доказывать.

Доказательство математических теорем есть частный случай доказательства вообще. Оно отличается от доказательства в житейских условиях или в других науках тем, что оно совершается по возможности чисто дедуктивным способом (от латинского слова дедукция - выведение), т. е. выведением новой доказываемой мысли (утверждения, суждения) из ранее доказанных или принятых без доказательства мыслей (аксиом) по правилам логики без каких-либо ссылок на примеры или опыт. В других науках, в житейских обстоятельствах мы для доказательства часто прибегаем к примерам, к опыту. Мы говорим: "Смотри" - и это может служить доказательством. В математике такой способ доказательства недопустим, ссылаться, например, на очевидные отношения, иллюстрируемые чертежом, не разрешается. Математическое доказательство должно представлять собой цепочку логических следствий из исходных аксиом, определений, условий теоремы и ранее доказанных теорем до требуемого заключения.

Таким образом, при доказательстве теоремы мы сводим ее к ранее доказанным теоремам, а те в свою очередь еще к другим и т. д. Очевидно, что этот процесс сведения должен быть конечным, и поэтому всякое доказательство в конце концов сводит доказываемую теорему к исходным определениям и принятым без доказательства аксиомам.

Следовательно, аксиомы служат не только для косвенного определения первичных понятий, но и в качестве оснований для доказательства всех теорем математики. Вот почему в числе аксиом встречаются и такие, которые указывают особые свойства понятий, имеющих логические определения. Так, например, параллельные прямые в курсе геометрии являются не первичным понятием, а определяемым. Однако одно из свойств параллельных прямых, а именно что через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной, мы вынуждены принять за аксиому, ибо, как было установлено великим русским геометром Н. И. Лобачевским (1792-1856), а также немецким математиком К. Ф. Гауссом (1777-1855) и венгерским математиком Я. Больяй (1802- 1860), доказать это свойство параллельных прямых на основе лишь остальных аксиом геометрии невозможно.

Всякий шаг доказательства состоит из трех частей: 1)предложение (аксиома, теорема, определение), на основе которого производится этот шаг доказательства; это основание шага доказательства называется посылкой или аргументом ; 2) логическое рассуждение, в процессе которого посылка применяется к условиям теоремы или к ранее полученным следствиям; 3) логическое следствие применения посылки к условиям или ранее полученным следствиям.

В последнем шаге доказательства теоремы в качестве следствия получаем утверждение, которое необходимо было доказать.

Покажем процесс доказательства на примере такой теоремы: "Диагонали прямоугольника равны".

В этой теореме нам дан произвольный (любой) прямоугольник. Для того чтобы легче было рассуждать в процессе доказательства, поступают следующим образом. Начертим вполне определенный прямоугольник ABCD (рис. 6), но при доказательстве не будем использовать какие-либо частные особенности этого прямоугольника (например, что его сторона АВ примерно в 2 раза больше стороны AD и т. д.). Поэтому наши рассуждения относительно этого определенного прямоугольника будут верны и для любого другого прямоугольника, т. е. они будут иметь общий характер для всех прямоугольников.

Проведем диагонали АС и BD . Рассмотрим полученные треугольники ABC и ABD . У этих треугольников углы ABC и BAD равны как прямые, катет АВ - общий, а катетыВС и AD равны как противоположные стороны прямоугольника. Следовательно, эти треугольники равны. Отсюда следует, что стороны АС и BD также равны, что и требовалось доказать.

Все доказательство этой теоремы можно изобразить в виде следующей схемы.


Самое трудное в доказательстве - это найти последовательность посылок (аксиом, теорем, определений), применяя которые к условиям теоремы или промежуточным результатам (следствиям) в конечном итоге можно получить нужное следствие - доказываемое положение.

Какими правилами нужно руководствоваться при поиске этой последовательности? Очевидно, что эти правила не могут носить обязательный характер, они лишь указывают возможные пути поиска. Поэтому они называются эвристическими правилами или просто эвристиками (от греческого слова эврика - нахожу, нашел). Многие выдающиеся математики, такие, как Папп (древнегреческий математик, живший в III в.), Блез Паскаль (1623- 1662), Рене Декарт (1596-1650), Жак Адамар (1865-1963), Дьердь Пойя (1887) и многие другие, занимались разработкой эвристик для поиска доказательства теорем и решения задач. Вот некоторые эвристические правила, которые полезно помнить:

  1. Полезно заменять названия объектов, о которых идет речь в теореме (задаче), их определениями или признаками. Например, в рассмотренной выше теореме шла речь о прямоугольнике, и мы для доказательства использовали определение прямоугольника.
  2. Если можно, то нужно доказываемое положение раздробить на части и доказывать каждую часть в отдельности. Так, например, доказательство теоремы: "Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм" - можно разделить на две части: сначала доказать, что одна пара противоположных сторон данного четырехугольника параллельна, а затем доказать, что и вторая пара противоположных сторон также параллельна. Так следует поступать всегда, когда есть возможность доказываемое утверждение разбить на несколько частей более простых утверждений.
  3. В поисках доказательства теоремы полезно идти с двух сторон: от условий теоремы к заключению и от заключения к условиям.

Например, нужно доказать такую теорему: "Если некоторая последовательность такова, что любой ее член, начиная со второго, является средним арифметическим предшествующего и последующего членов, то эта последовательность - арифметическая прогрессия".

Пойдем от условия теоремы. Что нам дано? Дано, что каждый член последовательности, начиная со второго (обозначим его а n , n>2 ), есть среднее арифметическое предшествующего и последующего членов, т. е. а n-1 и а n+1 . Значит, верно такое равенство:

(1)

Теперь пойдем от заключения. А что нам нужно доказать? Нужно доказать, что эта последовательность - арифметическая прогрессия. А какая последовательность называется арифметической прогрессией? Вспоминаем определение:

Сопоставляем данное нам условие (1) с заключением (2). Чтобы условие приняло форму заключения, надо преобразовать так:

Отсюда a n -a n-1 =a n+1 -a n . (4)

Левая и правая части (4) обозначают одно н то же, а именно разность между двумя последовательными членами заданной последовательности. Если в равенстве (4) п давать последовательно значения 2, 3 и т. д., то получим: a 2 -a 1 =a 3 -a 2 , затем а 3 - а 2 = а 4 - а 3 . и т. д. Следовательно, все эти разности равны между собой, а это значит, что разность a n -a n-1 есть постоянное число, которое можно обозначить буквой d :

Отсюда получаем: а n = а n-1 + d , а это значит, что согласно определению (2) данная последовательность есть арифметическая прогрессия, что нам и надо было доказать.

Эту эвристику можно и так сформулировать: надо стараться сблизить условие и заключение теоремы, преобразуя их или заменяя их следствиями.

Известен и ряд более частных эвристических правил, которые применяются при поиске лишь некоторых теорем. Например, такая эвристика: для того чтобы доказать равенство каких-либо отрезков, надо найти или построить фигуры, соответствующими сторонами которых являются эти отрезки; если фигуры окажутся равными, то будут равны и соответствующие отрезки.

Изучая теоремы, нужно не просто запоминать их доказательство, а каждый раз думать и устанавливать, какими методами они доказываются, какими эвристическими правилами руководствовались при нахождении этих доказательств, как догадались (додумались) до этих доказательств.

В ряде случаев для доказательства теорем используется особый прием, называемый "доказательством от противного" или "приведением к нелепости".

Сущность этого приема заключается в том, что предполагают несправедливость (ложность) заключения данной теоремы и доказывают, что такое предположение приводит к противоречию с условием или с ранее доказанными теоремами или аксиомами. А так как любое утверждение может быть либо верным, либо неверным (ничего другого быть не может), то полученное противоречие показывает, что допущение о ложности заключения теоремы неверно и, следовательно, заключение верно, тем самым теорема доказана.

Приведем пример.

Теорема. Две прямые, порознь параллельные третьей, параллельны между собой.

Дано: а||с, b||с.

Доказать: а||b (рис. 7).

Прямого (непосредственного)доказательства этой теоремы мы не знаем. Тогда докажем ее методом от противного.

Допустим, что заключение теоремы неверно, т. е. а не параллельна b . Тогда они пересекаются в некоторой точке М . А так как по условию каждая из этих прямых параллельна прямой с , то получается, что через точку М проведены две прямые а и b , параллельные одной и той же прямой с . А мы знаем по аксиоме параллельности, что через точку вне прямой можно провести не более одной прямой, параллельной данной. Пришли к противоречию с аксиомой. Это показывает, что наше предположение о не параллельности прямых а и b неверно, следовательно, а||b , что и требовалось доказать.

Другой пример.

Теорема. Среднее арифметическое двух положительных чисел не меньше (значит: больше или равно) среднего геометрического этих чисел.

Эту теорему можно так записать: (1), где а >0, b >0. Ее можно доказать как прямым способом, так и способом от противного. Докажем ее способом от противного.

Для этого допустим, что она неверна, т. е. среднее арифметическое меньше среднего геометрического двух положительных чисел:

(2)

Умножим обе части (2) на 2 и, возвысив их в квадрат, получим: a 2 +2ab+b 2 или a 2 -2ab+b 2 По формуле квадрата разности двух чисел получаем: (a-b) 2 .

В результате получили явную нелепость: квадрат некоторого числа (а-b) отрицателен, чего быть не может. Следовательно, предположение о неверности теоремы привело к противоречию, что доказывает справедливость теоремы.

Таким образом, доказательство от противного некоторой теоремы состоит в том, что мы делаем допущение о неверности заключения теоремы. Затем делаем ряд логических умозаключений на основе этого допущения, в результате которых приходим к явно нелепому положению (к противоречию с условием или ранее доказанными теоремами, аксиомами). Далее рассуждаем так: если бы наше предположение было бы верным, то мы могли бы прийти лишь к верному выводу, а так как мы пришли к неверному выводу, то это означает, что наше предположение было ложным, следовательно, тем самым мы убедились, что заключение теоремы верно.

Заметим, что если в результате рассуждений мы не получили бы нелепости (противоречия), то это еще не означало бы, что предположение верно. Иными словами, если исходить из верности (справедливости) заключения теоремы и из этого предположения получить верное (очевидное) следствие, то это еще не значит, что предположение верно: может случиться, что исходная теорема как раз неверна.

На этом построены многие софизмы (умышленно ложно построенные умозаключения, кажущиеся лишь правильными), этим объясняются многие ошибки, допускаемые, при решении задач.

Рассмотрим, например, такое равенство: a-b=b-a (1), где а и b - произвольные числа. Допустим, что (1) верно, тогда возвысим обе части (1) в квадрат, получим:

Перенеся все члены в одну сторону и сделав приведение подобных, придем к совершенно верному равенству: 0 = 0.

Но отсюда нельзя делать вывод, что и исходное равенство (1) верно. Если бы мы такой вывод сделали, то пришли бы к такому софизму: 2а = 2b или а = 6, т. е. любые произвольные числа равны между собой. Ошибка состоит в том, что из равенства квадратов двух чисел не следует равенство самих этих чисел. Например, (- 2) 2 = 2 2 , но -2≠2.

Вот пример ошибочного решения задачи.

Задача. Решить уравнение

(1)

Допустим, что (1) имеет решение и, следовательно, равенство (1) верно. Тогда получим:

Возвысим обе части в квадрат: 9х = х + 4х + 4 или х 2 - 5х + 4 = 0 , отсюда x 1 =4, x 2 =1.

Можно ли найденные значения х считать корнями уравнения (1)? Некоторые ученики отвечают на этот вопрос утвердительно, ибо ведь все преобразования уравнения верные. И все же ни одно из найденных значений х не является корнем (1). Это подтверждает проверка. Подставляя найденные значения х в (1), получаем явно нелепые равенства: 12 = 0 и 6 = 0.

Таким образом вы должны учиться доказывать теоремы (формулы), тождества и т. д., овладевать общими способами поиска доказательства теорем (эвристическими правилами).

Задание 6

6.1. Составьте схему шагов доказательства следующих теорем, указывая посылки, условия и следствия каждого шага:

а) В равнобедренном треугольнике медиана, проведенная к основанию, является и высотой.

б) (а + b) 2 = а 2 + 2аb+b 2 .

в) Середины сторон выпуклого четырех-угольника являются вершинами параллелограмма.

6.2. Найдите ошибку в доказательстве следующей заведомо ложной теоремы: "Катет прямоугольного треугольника равен его гипотенузе". (Рис. 8, на рисунке должен быть отрезок СМ .)

Проведем в прямоугольном треугольнике ABC (∠ С = 90°) биссектрису угла В и восставим в середине катета АС точке D перпендикуляр к нему. Очевидно, что они пересекутся в Рис. 8 некоторой точке М . Из точки М проведем MF⊥BC и ME ⊥АВ (рис. 8).

Рассмотрим треугольники ВМЕ и BMF , они оба прямоугольные по построению, гипотенуза MB у них общая, а углы MBF и МВЕ равны, ибо ВМ - биссектриса угла В. Следовательно, ΔMFB = ΔМЕВ . Отсюда BE = BF (1) и МЕ =MF (2). ΔCMD=ΔAMD как прямоугольные, у которых CD =AD и MD - общая. Тогда АМ = СМ (3). ΔAME=ΔCMF как прямоугольные в силу равенства (2) и (3). Отсюда AE = FC (4). Складывая равенства (1) и (4), получим АВ =ВС , что и требовалось доказать.

6.3. Докажите теорему: "Два треугольника равны, если две стороны и медианы к одной из них одного треугольника равны двум сторонам и медиане к соответствующей стороне другого треугольника" - и установите, какими эвристиками вы пользовались при поиске доказательства.

6.4. Какая ошибка допущена в доказательстве следующей теоремы: "Если длины сторон треугольника пропорциональны числам 3, 4 и 5, то треугольник прямоугольный"?

Доказательство: обозначим стороны этого треугольника а, b и с . По условию a=3k, b=4k и c = 5k . Тогда a 2 +b 2 =9k 2 +16k 2 =25k 2 =c 2 . Следовательно, по теореме Пифагора этот треугольник прямоугольный.

6.5. Докажите методом от противного теорему: "Во всяком треугольнике против большего угла лежит большая сторона".

6.6. Разберитесь в следующем софизме: "Хорда, не проходящая через центр окружности, равна диаметру".

Проведем в окружности диаметр АВ и возьмем на окружности произвольную точку С , отличную от A и B (рис. 9). Соединим С с А . Обозначим середину АС через М и проведем через нее и точку В прямую до пересечения с окружностью в точке D . Соединим D с С . Рассмотрим треугольники АВМ и CDM . У них АМ = СМ по построению, ∠ABM= ∠DCM как вписанные опирающиеся на одну и ту же дугу AD , ∠AMB =∠CMD как вертикальные, следовательно, по второму признаку равенства треугольников эти треугольники равны. А в равных треугольниках против равных углов лежат равные стороны, следовательно, AB = CD .

6.7. В чем ошибка в следующих рассуждениях:

4:4 = 5:5 (1). Выносим за скобки общие множители:

4-(1:1) = 5-(1:1), а так как 1:1 = 1 и 4 = 2*2, то получаем (2*2)*1=5-1, или 2*2 = 5.

6.8. Разберитесь в следующем софизме: "Положительное число меньше нуля".

Действительно, пусть a>b (1), где а и b - положительные числа. Умножим обе части (1) на b - а , получим: а(b - а)>b(b-a); ab -a 2 >b 2 - ab; 0>a 2 -2ab+b 2 ; 0>(a - b) 2 . Ho (a-b) 2 есть положительное число, ибо а≠b , следовательно, получили, что нуль больше положительного числа.

6.9. Как доказать предложение: "Средней линией трапеции называется отрезок, соединяющий середины боковых ее сторон".

Вам также будет интересно:

Клод шеннон краткая биография и интересные факты
Анатолий Ушаков, д. т. н, проф. каф. систем управления и информатики, университет «ИТМО»...
Воспаление придатков: причины, диагностика, лечение
Беспокоят тянущие или резкие боли внизу живота, нерегулярные месячные или их отсутствие,...
Болгарский красный сладкий перец: польза и вред
Сладкий (болгарский) перец – овощная культура, выращиваемая в средних и южных широтах. Овощ...
Тушеная капуста - калорийность
Белокочанная капуста - низкокалорийный овощ, и хотя в зависимости от способа тепловой...
Снежнянский городской методический кабинет
Отдел образования – это группа структурных подразделений: Аппарат: Начальник отдела...