Дети, мода, аксессуары. Уход за телом. Здоровье. Красота. Интерьер

Для чего нужны синонимы в жизни

Календарь Летоисчисление астрономия

Созвездие телец в астрономии, астрологии и легендах

Правила русской орфографии и пунктуации полный академический справочник Проп правила русской орфографии и пунктуации

Внеклассное мероприятие "Адыгея – родина моя!

Самые правдивые гадания на любовь

Луна таро значение в отношениях

Шницель из свинины на сковороде

Лихорадка Эбола — симптомы, лечение, история вируса

Ученым удалось измерить уровень радиации на марсе Максимальная интенсивность солнечного излучения на поверхности марса

Биография екатерины романовны дашковой Биография дашковой екатерины романовой

Сонник: к чему снится Собирать что-то

Cонник спасать, к чему снится спасать во сне видеть

Чудотворная молитва ангелу-хранителю о помощи

Со свинным рылом да в калашный ряд Минфин придумал для россиян «гарантированный пенсионный продукт»

Как определить, какие точки находятся внутри многоугольника, а какие нет (большое количество точек)? Графическое отображение точки на комплексном чертеже

Показывающая связь знака производной с характером монотонности функции.

Пожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции или ее производной

Если дан график производной , то интересовать нас будут только знаки функции и нули. Никакие «холмики» и «впадины» не интересуют нас в принципе!

Задача 1.

На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.


Решение:

На рисунке выделены цветом области убывания функции :


В эти области убывания функции попадает 4 целые значения .


Задача 2.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой (или, что тоже самое, ), имеющей угловой коэффициент , равный нулю, то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что касательная параллельна оси , так как угловой коэффициент есть тангенс угла наклона касательной к оси .

Поэтому мы находим на графике точки экстремума (точки максимума и минимума), – именно в них касательные к графику функции будут параллельны оси .


Таких точек – 4.

Задача 3.

На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой , имеющей угловой коэффициент , то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что в точках касания.

Поэтому смотрим, сколько точек на графике имеют ординату , равную .

Как видим, таких точек – четыре.

Задача 4.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых производная функции равна 0.


Решение:

Производная равна нулю в точках экстремума. У нас их 4:


Задача 5.

На рисунке изображён график функции и одиннадцать точек на оси абсцисс:. В скольких из этих точек производная функции отрицательна?


Решение:

На промежутках убывания функции её производная принимает отрицательные значения. А убывает функция в точках. Таких точек 4.

Задача 6.

На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .


Решение:

Точки экстремума – это точки максимума (-3, -1, 1) и точки минимума (-2, 0, 3).

Сумма точек экстремума: -3-1+1-2+0+3=-2.

Задача 7.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.


Решение:

На рисунке выделены промежутки, на которых производная функции неотрицательная.

На малом промежутке возрастания целых точек нет, на промежутке возрастания четыре целых значения : , , и .


Их сумма:

Задача 8.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.


Решение:

На рисунке выделены цветом все промежутки, на которых производная положительна, а значит сама функция возрастает на этих промежутках.


Длина наибольшего из них – 6.

Задача 9.

На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.


Решение:

Смотрим как ведет себя график на отрезке , а именно нас интересует только знак производной .


Знак производной на – минус, так как график на этом отрезке ниже оси .

Критические точки – это точки в которых производная функции равна нулю или не существует. Если производная равна 0 то функция в этой точке принимает локальный минимум или максимум . На графике в таких точках функция имеет горизонтальную асимптоту, то есть касательная параллельна оси Ох .

Такие точки называют стационарными . Если видите на графике непрерывной функции «горб» или «яму» помните, что максимум или минимум достигается в критической точке. Рассмотрим для примера следующее задание.

Пример 1. Найти критические точки функции y=2x^3-3x^2+5 .
Решение. Алгоритм нахождения критических точек следующий:

Итак функция имеет две критические точки.

Далее, если нужно провести исследование функции то определяем знак производной слева и справа от критической точки. Если производная при переходе через критическую точку меняет знак с «-» на «+» , то функция принимает локальный минимум . Если с «+» на «-» должны локальный максимум .

Второй тип критических точек это нули знаменателя дробных и иррациональных функций

Функции с логарифмами и тригонометрические, которые не определены в этих точках


Третий тип критических точек имеют кусочно-непрерывные функции и модули.
Например любая модуль-функция имеет минимум или максимум в точке излома.

Например модуль y = | x -5 | в точке x = 5 имеет минимум (критическую точку).
Производная в ней не существует, а справа и слева принимает значение 1 и -1 соответственно.

Попробуйте определить критические точки функций

1)
2)
3)
4)
5)

Если в ответе у Вы получите значение
1) x=4;
2) x=-1;x=1;
3) x=9;
4) x=Pi*k;
5) x=1.
то Вы уже знаете как найти критические точки и сможете справиться с простой контрольной или тестами.

Привет всем Хабра людям. Хочу представить уважаемым читателям пример, когда сухая и далекая от жизни в нашем понимании высшая математика дала не плохой практический результат.

Сначала немного воспоминаний
Было это в бытность мою студентом одного из технических Вузов в 90-е, курсе наверно втором. Попал я как-то на олимпиаду по программированию. И вот на этой самой олимпиаде и было задача: задать координаты треугольника, тестовой точки на плоскости, и определить принадлежит ли эта точка области треугольника. В общем, плевая задачка, но тогда я ее так и не решил. Но после задумался – над более общей задачей – принадлежность полигону. Повторюсь – была середина 90 –х, интернета не было, книжек по компьютерной геометрии не было, а были лекции по вышке и лаборатория 286 –х с турбо паскалем. И вот так совпали звезды, что как раз в то время когда я размышлял над проблемой, на вышке нам читали теорию комплексного переменного. И одна формула (о ней ниже) упала на благодатную почву. Алгоритм был придуман и реализован на паскале (к сожалению мой полутора гиговый винт погиб и унес в небытие этот код и кучу других моих юношеских наработок). После института я попал работать в один НИИ. Там мне пришлось заниматься разработкой ГИС для нужд работников института и собственной одной из задачей было определение попадания объектов в контур. Алгоритм был переписан на С++ и отлично зарекомендовал себя в работе.

Задача для алгоритма

Дано:
Г- замкнутая ломаная (далее полигон) на плоскости, заданная координатами своих вершин (xi,yi), и координата тестовой точки (x0,y0)
Определить:
принадлежит ли точка области D, ограниченной полигоном.

Вывод формул для последующего написания алгоритма ни в коем случае не претендует на математическую полноту и точность, а лишь демонстрирует инженерный (потребительский подход) к Царице полей наук.

Пояснение с рабоче-крестьянской инженерной точки зрения:
- граница Г наш заданный контур,
- z0 -тестируемая точка
- f(z) - комплексная функция от комплексного аргумента нигде в контуре не обращается в бесконечность.

Те есть, чтобы установить принадлежность точки контуру, нам необходимо вычислить интеграл и сравнить его со значением функции в данной точки. Если они совпадают, то точка лежит в контуре. Замечание: интегральная теорема коши гласит, что если точка не лежит в контуре, те подынтегральное выражение нигде не обращается в бесконечность, то интеграл равен нулю. Это упрощает дело – нужно лишь вычислить интеграл и проверить его на равенство нулю: равен нулю точка не контура, отличен - лежит в контуре.
Займемся вычислением интеграла. За f(z) примем простую функцию 1. Не нарушая общности можно за z0 принять точку 0 (всегда можно сдвинуть координаты).

Избавляемся от мнимой единицы в знаменателе подынтегральной части и расщепим интеграл на действительную и мнимую части:

Получилось два криволинейных интеграла II рода.
Вычислим первый

Выполнятся условие не зависимости интеграла от пути, следовательно, первый интеграл равен нулю и его вычислять не нужно.

С мнимой частью такой фокус не проходит. Вспоминаем, что наша граница состоит из отрезков прямых, получаем:

Где Гi- это отрезок (xi,yi)- (xi+1,y i+1)
Вычислим i-ый интеграл. Для этого запишем уравнение i-го отрезка в параметрическом виде

Подставим в интеграл

И после громоздких и нудных преобразований получим следующую прельстивую формулу:

Окончательно получаем

Алгоритм на C++:

template <class T>
bool pt_in_polygon(const T &test,const std::vector &polygon)
{
if (polygon.size()<3) return false;

Std::vector::const_iterator end=polygon.end();

T last_pt=polygon.back();

Last_pt.x-=test.x;
last_pt.y-=test.y;

double sum=0.0;

for (
std::vector::const_iterator iter=polygon.begin();
iter!=end;
++iter
{
T cur_pt=*iter;
cur_pt.x-=test.x;
cur_pt.y-=test.y;

double del= last_pt.x*cur_pt.y-cur_pt.x*last_pt.y;
double xy= cur_pt.x*last_pt.x+cur_pt.y*last_pt.y;

Sum+=
atan((last_pt.x*last_pt.x+last_pt.y*last_pt.y - xy)/del)+
atan((cur_pt.x*cur_pt.x+cur_pt.y*cur_pt.y- xy)/del)
);

Last_pt=cur_pt;

return fabs(sum)>eps;

T – тип точки, например:
struct PointD
{
double x,y;
};

Управление:
клик левой кнопкой – добавление новой точки контура
правой кнопкой - замыкание контура
левой с зажатым Shift-ом – перенос тестовой точки

Господа, кому интересно, привожу более быстрый алгоритм. Уже не мой.
Отдельное и огромное спасибо за статейку.
template bool pt_in_polygon2(const T &test,const std::vector &polygon)
{

Static const int q_patt= { {0,1}, {3,2} };

If (polygon.size()<3) return false;

Std::vector::const_iterator end=polygon.end();
T pred_pt=polygon.back();
pred_pt.x-=test.x;
pred_pt.y-=test.y;

Int pred_q=q_patt;

For(std::vector::const_iterator iter=polygon.begin();iter!=end;++iter)
{
T cur_pt = *iter;

Cur_pt.x-=test.x;
cur_pt.y-=test.y;

Int q=q_patt;

Switch (q-pred_q)
{
case -3:++w;break;
case 3:--w;break;
case -2:if(pred_pt.x*cur_pt.y>=pred_pt.y*cur_pt.x) ++w;break;
case 2:if(!(pred_pt.x*cur_pt.y>=pred_pt.y*cur_pt.x)) --w;break;
}

Pred_pt = cur_pt;
pred_q = q;

Это вторая часть моей статьи посвящена вычислительной геометрии. Думаю, эта статья будет интереснее предыдущей, поскольку задачки будут чуть сложнее.

Начнем с взаимного расположения точки относительно прямой, луча и отрезка.

Задача №1
Определить взаимное расположении точки и прямой: лежит выше прямой, на прямой, под прямой.

Решение
Понятно, что если прямая задана своим уравнением ax + by + c = 0, то тут и решать нечего. Достаточно подставить координаты точки в уравнение прямой и проверить чему оно равно. Если больше нуля, то точка находится в верхней полуплоскости, если равна нулю, то точка находится на прямой и если меньше нуля, то точка находится в нижней полуплоскости. Интереснее случай, когда прямая задана, задана координатами двух точек назовем их P 1 (x 1 , y 1), P 2 (x 2 , y 2). В этом случае можно спокойно найти коэффициенты a, b и c и применить предыдущее рассуждение. Но надо сначала подумать, оно нам надо? Конечно, нет! Как я говорил косое произведения - это просто жемчужина вычислительной геометрии. Давайте применим его. Известно, что косое произведение двух векторов положительно, если поворот от первого вектора ко второму идет против часовой стрелки, равно нулю, если векторы коллинеарны и отрицательно, если поворот идет по часовой стрелки. Поэтому нам достаточно посчитать косое произведение векторов P 1 P 2 и P 1 M и по его знаку сделать вывод.

Задача №2
Определить принадлежит ли точка лучу.

Решение
Давайте вспомним, что такое луч: луч - это прямая, ограниченная точкой с одной стороны, а с другой стороны бесконечная. То есть луч задается некоторой начальной точкой и любой точкой лежащей на нем. Пусть точка P 1 (x 1 , y 1) - начало луча, а P 2 (x 2 , y 2) - любая точка принадлежащая лучу. Понятно, что если точка принадлежит лучу, то она принадлежит и прямой проходящей через эти точки, но не наоборот. Поэтому принадлежность прямой является необходимым, но не достаточным условием для принадлежности лучу. Поэтому от проверки косового произведения нам никуда не деться. Для достаточного условия нужно вычислить еще и скалярное произведение тех же векторов. Если оно меньше нуля, то точка не принадлежит лучу, если же оно не отрицательно, то точка лежит на луче. Почему так? Давайте посмотрим на рисунок.

Итак, для того чтобы точка M(x, y) лежала на луче с начальной точкой P 1 (x 1 , y 1), где P 2 (x 2 , y 2) лежит на луче необходимо и достаточно выполнения двух условий:

2. (P 1 P 2 , P 1 M) ≥ 0 – скалярное произведение (точка лежит на луче)

Задача №3
Определить принадлежит ли точка отрезку.

Решение
Пусть точки P 1 (x 1 , y 1), P 2 (x 2 , y 2) концы заданного отрезка. Опять-таки необходимым условием принадлежности точки отрезку является ее принадлежность прямой проходящей через P 1 , P 2 . Далее нам нужно определить лежит ли точка между точками P 1 и P 2 , для этого нам на помощь приходит скалярное произведение векторов только на этот раз других: (MP 1 , MP 2). Если оно меньше либо равно нуля, то точка лежит на отрезке, иначе вне отрезка. Почему так? Посмотрим на рисунок.

Итак, для того чтобы точка M(x, y) лежала на отрезке с концами P 1 (x 1 , y 1), P 2 (x 2 , y 2) необходимо и достаточно выполнения условий:
1. = 0 – косое произведение (точка лежит на прямой)
2. (MP 1 ,MP 2) ≤ 0 – скалярное произведение (точка лежит между P 1 и P 2)

Задача №4
Взаимное расположение двух точек относительно прямой.

Решение
В этой задаче необходимо определить по одну или по разные стороны относительно прямой находятся две точки.

Если точки находятся по разные стороны относительно прямой, то косые произведения имеют разные знаки, а значит их произведение отрицательно. Если же точки лежат по одну сторону относительно прямой, то знаки косых произведений совпадают, значит, их произведение положительно.
Итак:
1. * < 0 – точки лежат по разные стороны.
2. * > 0 – точки лежат по одну сторону.
3. * = 0 – одна (или две) из точек лежит на прямой.

Кстати, задача об определении наличия точки пересечения у прямой и отрезка решается точно также. Точнее, это и есть эта же задача: отрезок и прямая пересекаются, когда концы отрезка находятся по разные стороны относительно прямой или когда концы отрезка лежат на прямой, то есть необходимо потребовать * ≤ 0.

Задача №5
Определить пересекаются ли две прямые.

Решение
Будем считать, что прямые не совпадают. Понятно, что прямые не пересекаются, только если они параллельны. Поэтому, найдя условие параллельности, мы можем, определить пересекаются ли прямые.
Допустим прямые заданы своими уравнениями a 1 x + b 1 y + c 1 = 0 и a 2 x + b 2 y + c 2 = 0. Тогда условие параллельности прямых заключается в том, что a 1 b 2 - a 2 b 1 = 0.
Если же прямые заданы точками P 1 (x 1 , y 1), P 2 (x 2 , y 2), M 1 (x 3 , y 3), M 2 (x 4 , y 4), то условие их параллельности заключается в проверки косого произведения векторов P 1 P 2 и M 1 M 2: если оно равно нулю, то прямые параллельны.

В общем, то когда прямые заданы своими уравнениями мы тоже проверяем косое произведение векторов (-b 1 , a 1), (-b 2 , a 2) которые называются направляющими векторами.

Задача №6
Определить пересекаются ли два отрезка.

Решение
Вот эта задача мне, действительно, нравится. Отрезки пересекаются тогда, когда, концы каждого отрезка лежат по разные стороны от другого отрезка. Посмотрим на рисунок:

Итак, нам нужно проверить, чтобы концы каждого из отрезков лежали по разные стороны относительного концов другого отрезка. Пользуемся косым произведением векторов. Посмотрите на первый рисунок: > 0, < 0 => * < 0. Аналогично
* < 0. Вы наверно думаете, почему не меньше либо равно. А потому, что возможен следующий случай, при котором векторное произведение как раз и равно нулю, но отрезки не пересекаются:

Поэтому нам необходимо сделать еще одну проверку, а именно: принадлежит ли хотя бы один конец каждого отрезка другому (принадлежность точки отрезку). Эту задачу мы уже решали.

Итак, для того чтобы отрезки имели общие точки необходимо и достаточно:
1. Концы отрезков лежат по разные стороны относительно другого отрезка.
2. Хотя бы один из концов одного отрезка принадлежит другому отрезку.

Задача №7
Расстояние от точки до прямой.

Решение
Пусть прямая задана двумя точками P 1 (x 1 , y 1) и P 2 (x 2 , y 2).

В предыдущей статье мы говорили о том, что геометрически косое произведение - это ориентированная площадь параллелограмма, поэтому S P 1 P 2 M = 0,5*. С другой стороны каждому школьнику известна формула для нахождения площади треугольника: половина основание на высоту.
S P 1 P 2 M = 0,5*h*P 1 P 2 .
Приравнивая эти площади, находим

По модулю взяли потому, что первая площадь ориентированная.

Если же прямая задана уравнением ax + by + c = 0, то уравнение прямой проходящей через точку M перпендикулярной заданной прямой есть: a(y - y 0) – b(x - x 0) = 0. Теперь спокойно можно решить систему из полученных уравнений, найти их точку пересечения и вычислить расстояние от исходной точки до найденной: оно будет ровно ρ = (ax 0 + by 0 + c)/√(a 2 + b 2).

Задача №8
Расстояние от точки до луча.

Решение
Эта задача отличается от предыдущей тем, что в этом случае может получиться, так что перпендикуляр из точки не падает на луч, а падает на его продолжение.

В случае, когда перпендикуляр не падает на луч необходимо найти расстояние от точки до начала луча – это и будет ответом на задачу.

Как же определить падает ли перпендикуляр на луч или нет? Если перпендикуляр не падает на луч, то угол MP 1 P 2 – тупой иначе острый (прямой). Поэтому по знаку скалярного произведения векторов мы можем определить попадает ли перпендикуляр на луч или нет:
1. (P 1 M, P 1 P 2) < 0 перпендикуляр не попадает на луч
2. (P 1 M, P 1 P 2) ≥ 0 перпендикуляр попадает на луч

Задача №9
Расстояние от точки до отрезка.

Решение
Рассуждаем аналогично предыдущей задаче. Если перпендикуляр не падает на отрезок, то ответом будет минимальное из расстояний от данной точки до концов отрезка.

Чтобы определить попадает ли перпендикуляр на отрезок нужно по аналогии с предыдущей задачей использовать скалярное произведение векторов. Если перпендикуляр не падает на отрезок, то либо угол MP 1 P 2 либо угол MP 2 P 1 будут тупыми. Поэтому по знаку скалярных произведений мы можем определить попадает ли перпендикуляр на отрезок или нет:
Если (P 1 M, P 1 P 2) < 0 или (P 2 M, P 2 P 1) < 0 то перпендикуляр не падает на отрезок.

Задача №10
Определить количество точек прямой и окружности.

Решение
Прямая и окружность может иметь нуль, одну или две точки пересечения. Давайте посмотрим на рисунки:

Здесь из рисунков и так все понятно. Мы имеем две точки пересечения, если расстояние от центра окружности до прямой меньше радиуса окружности. Одну точку касания, если расстояние от центра до прямой равно радиусу. И наконец, ни одной точки пересечения, если расстояние от центра окружности до прямой больше радиуса окружности. Поскольку задача нахождения расстояние от точки до прямой была уже нами решена, то и эта задача тоже решена.

Задача №11
Взаимное расположение двух окружностей.

Решение
Возможные случаи расположения окружностей: пересекаются, касаются, не пересекаются.

Рассмотрим случай, когда окружности пересекаются, и найдем площадь их пересечения. Эту задачу я очень люблю, так как потратил на ее решение изрядное количество времени (было это давно - на первом курсе).




Вспомним теперь, что такое сектор и сегмент.

Пересечение кругов состоит из двух сегментов O 1 AB и O 2 AB.

Казалось бы необходимо сложить площади этих сегментов и все. Однако, все не так просто. Необходимо еще определить всегда ли эти формулы верны. Оказывается, нет!

Рассмотрим случай, когда центр второго круга O 2 совпадает с точкой C. В этом случае d 2 = 0 и за значение α примем α = π. В этом случае имеем полукруг с площадью 1/2 πR 2 2 .

Теперь рассмотрим случай, когда центр второго круга O 2 находится между точками O 1 и C. В этом случае получим отрицательное значение величины d 2 . Использование отрицательного значения d 2 приводит к отрицательному значению α. В этом случае необходимо для правильного ответа прибавить к α 2π.

Заключение
Ну вот и все. Мы рассмотрели не все, но наиболее часто встречаемые задачи вычислительной геометрии касающиеся взаимного расположения объектов.

Надеюсь, Вам понравилось.

В двумерном пространстве две прямые пересекаются только в одной точке, задаваемой координатами (х,y). Так как обе прямые проходят через точку их пересечения, то координаты (х,y) должны удовлетворять обоим уравнениям, которые описывают эти прямые. Воспользовавшись некоторыми дополнительными навыками вы сможете находить точки пересечения парабол и других квадратичных кривых.

Шаги

Точка пересечения двух прямых

    Запишите уравнение каждой прямой, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения. Возможно, данное вам уравнение вместо «у» будет содержать переменную f(x) или g(x); в этом случае обособьте такую переменную. Для обособления переменной выполните соответствующие математические операции на обеих сторонах уравнения.

    • Если уравнения прямых вам не даны, на основе известной вам информации.
    • Пример . Даны прямые, описываемые уравнениями и y − 12 = − 2 x {\displaystyle y-12=-2x} . Чтобы во втором уравнении обособить «у», прибавьте к обеим сторонам уравнения число 12:
  1. Вы ищете точку пересечения обеих прямых, то есть точку, координаты (х,у) которой удовлетворяют обоим уравнениям. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять. Запишите новое уравнение.

    • Пример . Так как y = x + 3 {\displaystyle y=x+3} и y = 12 − 2 x {\displaystyle y=12-2x} , то можно записать такое равенство: .
  2. Найдите значение переменной «х». Новое уравнение содержит только одну переменную «х». Для нахождения «х» обособьте эту переменную на левой стороне уравнения, выполнив соответствующие математические операции на обеих сторонах уравнения. Вы должны получить уравнение вида х = __ (если вы не можете это сделать, этого раздела).

    • Пример . x + 3 = 12 − 2 x {\displaystyle x+3=12-2x}
    • Прибавьте 2 x {\displaystyle 2x} к каждой стороне уравнения:
    • 3 x + 3 = 12 {\displaystyle 3x+3=12}
    • Вычтите 3 из каждой стороны уравнения:
    • 3 x = 9 {\displaystyle 3x=9}
    • Разделите каждую сторону уравнения на 3:
    • x = 3 {\displaystyle x=3} .
  3. Используйте найденное значение переменной «х» для вычисления значения переменной «у». Для этого подставьте найденное значение «х» в уравнение (любое) прямой.

    • Пример . x = 3 {\displaystyle x=3} и y = x + 3 {\displaystyle y=x+3}
    • y = 3 + 3 {\displaystyle y=3+3}
    • y = 6 {\displaystyle y=6}
  4. Проверьте ответ. Для этого подставьте значение «х» в другое уравнение прямой и найдите значение «у». Если вы получите разные значение «у», проверьте правильность ваших вычислений.

    • Пример: x = 3 {\displaystyle x=3} и y = 12 − 2 x {\displaystyle y=12-2x}
    • y = 12 − 2 (3) {\displaystyle y=12-2(3)}
    • y = 12 − 6 {\displaystyle y=12-6}
    • y = 6 {\displaystyle y=6}
    • Вы получили такое же значение «у», поэтому в ваших вычислениях ошибок нет.
  5. Запишите координаты (х,у). Вычислив значения «х» и «у», вы нашли координаты точки пересечения двух прямых. Запишите координаты точки пересечения в виде (х,у).

    • Пример . x = 3 {\displaystyle x=3} и y = 6 {\displaystyle y=6}
    • Таким образом, две прямые пересекаются в точке с координатами (3,6).
  6. Вычисления в особых случаях. В некоторых случаях значение переменной «х» найти нельзя. Но это не значит, что вы допустили ошибку. Особый случай имеет место при выполнении одного из следующих условий:

    • Если две прямые параллельны, они не пересекаются. При этом переменная «х» просто сократится, а ваше уравнение превратится в бессмысленное равенство (например, 0 = 1 {\displaystyle 0=1} ). В этом случае в ответе запишите, что прямые не пересекаются или решения нет.
    • Если оба уравнения описывают одну прямую, то точек пересечения будет бесконечное множество. При этом переменная «х» просто сократится, а ваше уравнение превратится в строгое равенство (например, 3 = 3 {\displaystyle 3=3} ). В этом случае в ответе запишите, что две прямые совпадают.

    Задачи с квадратичными функциями

    1. Определение квадратичной функции. В квадратичной функции одна или несколько переменных имеют вторую степень (но не выше), например, x 2 {\displaystyle x^{2}} или y 2 {\displaystyle y^{2}} . Графиками квадратичных функций являются кривые, которые могут не пересекаться или пересекаться в одной или двух точках. В этом разделе мы расскажем вам, как найти точку или точки пересечения квадратичных кривых.

    2. Перепишите каждое уравнение, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения.

      • Пример . Найдите точку (точки) пересечения графиков x 2 + 2 x − y = − 1 {\displaystyle x^{2}+2x-y=-1} и
      • Обособьте переменную «у» на левой стороне уравнения:
      • и y = x + 7 {\displaystyle y=x+7} .
      • В этом примере вам дана одна квадратичная функция и одна линейная функция. Помните, что если вам даны две квадратичные функции, вычисления аналогичны шагам, изложенным далее.
    3. Приравняйте выражения, расположенные с правой стороны каждого уравнения. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять.

      • Пример . y = x 2 + 2 x + 1 {\displaystyle y=x^{2}+2x+1} и y = x + 7 {\displaystyle y=x+7}
    4. Перенесите все члены полученного уравнения на его левую сторону, а на правой стороне запишите 0. Для этого выполните базовые математические операции. Это позволит вам решить полученное уравнение.

      • Пример . x 2 + 2 x + 1 = x + 7 {\displaystyle x^{2}+2x+1=x+7}
      • Вычтите «x» из обеих сторон уравнения:
      • x 2 + x + 1 = 7 {\displaystyle x^{2}+x+1=7}
      • Вычтите 7 из обеих сторон уравнения:
    5. Решите квадратное уравнение. Перенеся все члены уравнения на его левую сторону, вы получили квадратное уравнение. Его можно решить тремя способами: при помощи специальной формулы, и .

      • Пример . x 2 + x − 6 = 0 {\displaystyle x^{2}+x-6=0}
      • При разложении уравнения на множители вы получите два двучлена, при перемножении которых получается исходное уравнение. В нашем примере первый член x 2 {\displaystyle x^{2}} можно разложить на х*х. Сделайте следующую запись: (x)(x) = 0
      • В нашем примере свободный член -6 можно разложить на следующие множители: − 6 ∗ 1 {\displaystyle -6*1} , − 3 ∗ 2 {\displaystyle -3*2} , − 2 ∗ 3 {\displaystyle -2*3} , − 1 ∗ 6 {\displaystyle -1*6} .
      • В нашем примере второй член – это х (или 1x). Сложите каждую пару множителей свободного члена (в нашем примере -6), пока не получите 1. В нашем примере подходящей парой множителей свободного члена являются числа -2 и 3 ( − 2 ∗ 3 = − 6 {\displaystyle -2*3=-6} ), так как − 2 + 3 = 1 {\displaystyle -2+3=1} .
      • Заполните пробелы найденной парой чисел: .
    6. Не забудьте про вторую точку пересечения двух графиков. Если вы решаете задачу быстро и не очень внимательно, вы можете забыть про вторую точку пересечения. Вот как найти координаты «х» двух точек пересечения:

      • Пример (разложение на множители) . Если в уравнении (x − 2) (x + 3) = 0 {\displaystyle (x-2)(x+3)=0} одно из выражений в скобках будет равно 0, то все уравнение будет равно 0. Поэтому можно записать так: x − 2 = 0 {\displaystyle x-2=0} x = 2 {\displaystyle x=2} и x + 3 = 0 {\displaystyle x+3=0} x = − 3 {\displaystyle x=-3} (то есть вы нашли два корня уравнения).
      • Пример (использование формулы или дополнение до полного квадрата) . При использовании одного из этих методов в процессе решения появится квадратный корень. Например, уравнение из нашего примера примет вид x = (− 1 + 25) / 2 {\displaystyle x=(-1+{\sqrt {25}})/2} . Помните, что при извлечении квадратного корня вы получите два решения. В нашем случае: 25 = 5 ∗ 5 {\displaystyle {\sqrt {25}}=5*5} , и 25 = (− 5) ∗ (− 5) {\displaystyle {\sqrt {25}}=(-5)*(-5)} . Поэтому запишите два уравнения и найдите два значения «х».
    7. Графики пересекаются в одной точке или вообще не пересекаются. Такие ситуации имеют место при соблюдении следующих условий:

      • Если графики пересекаются в одной точке, то квадратное уравнение раскладывается на одинаковые множители, например, (х-1) (х-1) = 0, а в формуле появляется квадратный корень из 0 ( 0 {\displaystyle {\sqrt {0}}} ). В этом случае уравнение имеет только одно решение.
      • Если графики вообще не пересекаются, то уравнение на множители не раскладывается, а в формуле появляется квадратный корень из отрицательного числа (например, − 2 {\displaystyle {\sqrt {-2}}} ). В этом случае в ответе напишите, что решения нет.

Вам также будет интересно:

Клод шеннон краткая биография и интересные факты
Анатолий Ушаков, д. т. н, проф. каф. систем управления и информатики, университет «ИТМО»...
Воспаление придатков: причины, диагностика, лечение
Беспокоят тянущие или резкие боли внизу живота, нерегулярные месячные или их отсутствие,...
Болгарский красный сладкий перец: польза и вред
Сладкий (болгарский) перец – овощная культура, выращиваемая в средних и южных широтах. Овощ...
Тушеная капуста - калорийность
Белокочанная капуста - низкокалорийный овощ, и хотя в зависимости от способа тепловой...
Снежнянский городской методический кабинет
Отдел образования – это группа структурных подразделений: Аппарат: Начальник отдела...