Дети, мода, аксессуары. Уход за телом. Здоровье. Красота. Интерьер

Для чего нужны синонимы в жизни

Календарь Летоисчисление астрономия

Созвездие телец в астрономии, астрологии и легендах

Правила русской орфографии и пунктуации полный академический справочник Проп правила русской орфографии и пунктуации

Внеклассное мероприятие "Адыгея – родина моя!

Самые правдивые гадания на любовь

Луна таро значение в отношениях

Шницель из свинины на сковороде

Лихорадка Эбола — симптомы, лечение, история вируса

Ученым удалось измерить уровень радиации на марсе Максимальная интенсивность солнечного излучения на поверхности марса

Биография екатерины романовны дашковой Биография дашковой екатерины романовой

Сонник: к чему снится Собирать что-то

Cонник спасать, к чему снится спасать во сне видеть

Чудотворная молитва ангелу-хранителю о помощи

Со свинным рылом да в калашный ряд Минфин придумал для россиян «гарантированный пенсионный продукт»

Производство передача электроэнергии ее использование. Производство электроэнергии в России. Производство, передача и использование электроэнергии

К атегория: Электромонтажные работы

Производство электрической энергии

Электрическая энергия (электроэнергия) является наиболее совершенным видом энергии и используется во всех сферах и отраслях материального производства. К ее преимуществам относят - возможность передачи на большие расстояния и преобразование в другие виды энергии (механическую, тепловую, химическую, световую и др).

Электрическая энергия вырабатывается на специальных предприятиях - электрических станциях, преобразующих в электрическую другие виды энергии: химическую, топлива, энергию воды, ветра, солнца, атомную.

Возможность передачи электроэнергии на большие расстояния позволяет строить электростанции вблизи мест нахождения топлива или на многоводных реках, что является более экономичным, чем подвоз в больших количествах топлива к электростанциям, расположенным вблизи потребителей электроэнергии.

В зависимости от вида используемой энергии различают электростанции тепловые, гидравлические, атомные. Электростанции, использующие энергию ветра и теплоту солнечных лучей, представляют собой пока маломощные источники электроэнергии, не имеющие промышленного значения.

На тепловых электростанциях используется тепловая энергия, получаемая при сжигании в топках котлов твердого топлива (уголь, торф, горючие сланцы), жидкого (мазут) и газообразного (природный газ, а на металлургических заводах - доменный и коксовый газ).

Тепловая энергия превращается в механическую энергию вращением турбины, которая в генераторе, соединенном с турбиной, преобразуется в электрическую. Генератор становится источником электроэнергии. Тепловые электростанции различают по виду первичного двигателя: паровая турбина, паровая машина, двигатель внутреннего сгорания, локомобиль, газовая турбина. Кроме того, паротурбинные электростанции подразделяют на конденсационные и теплофикационные. Конденсационные станции снабжают потребителей только электрической энергией. Отработанный пар проходит цикл охлаждения и, превращаясь в конденсат, вновь подается в котел.

Снабжение потребителей тепловой и электрической энергией осуществляется теплофикационными станциями, называемыми теплоэлектроцентралями (ТЭЦ). На этих станциях тепловая энергия только частично преобразуется в электрическую, а в основном расходуется на снабжение промышленных предприятий и других потребителей, расположенных в непосредственной близости от электростанций, паром и горячей водой.

Гидроэлектростанции (ГЭС) сооружают на реках, являющихся неиссякаемым источником энергии для электростанций. Они текут с возвышенностей в низины и, следовательно, способны совершать механическую работу. На горных реках сооружают ГЭС, используя естественный напор воды. На равнинных реках напор создается искусственно сооружением плотин, вследствие разности уровней воды по обеим сторонам плотины. Первичными двигателями на ГЭС являются гидротурбины, в которых энергия потока воды преобразуется в механическую энергию.

Вода вращает рабочее колесо гидротурбины и генератор, при этом механическая энергия гидротурбины преобразуется в электрическую, вырабатываемую генератором. Сооружение ГЭС решает кроме задачи выработки электроэнергии также комплекс других задач народнохозяйственного значения - улучшение судоходства рек, орошение и обводнение засушливых земель, улучшение водоснабжения городов и промышленных предприятий.

Атомные электростанции (АЭС) относят к тепловым паротурбинным станциям, работающим не на органическом топливе, а использующим в качестве источника энергии теплоту, получаемую в процессе деления ядер атомов ядерного топлива (горючего), - урана или плутония. На АЭС роль котельных агрегатов выполняют атомные реакторы и парогенераторы.

Электроснабжение потребителей осуществляется преимущественно от электрических сетей, объединяющих ряд электростанций. Параллельная работа электрических станций на общую электрическую сеть обеспечивает рациональное распределение нагрузки между электростанциями, наиболее экономичную выработку электроэнергии, лучшее использование установленной мощности станций, повышение надежности электроснабжения потребителей и отпуска им электроэнергии с нормальными качественными показателями по частоте и напряжению.

Необходимость объединения вызвана неодинаковой нагрузкой электростанций. Спрос потребителей на электроэнергию резко изменяется не только в течение суток, но и в разные времена года. Зимой потребление электроэнергии на освещение возрастает. В сельском хозяйстве электроэнергия в больших количествах нужна летом на полевые работы и орошение.

Разница в степени загрузки станций особо ощутима при значительном отдалении районов потребления электроэнергии друг от друга в направлении с востока на запад, что объясняется разновременностью наступления часов утренних и вечерних максимумов нагрузки. Чтобы обеспечить надежность электроснабжения потребителей и полнее использовать мощность электростанций, работающих в разных режимах, их объединяют в энергетические или электрические системы с помощью электрических сетей высокого напряжения.

Совокупность электростанций, линий электропередачи и тепловых сетей, а также приемников электро- и тепло-энергии, связанных в одно целое общностью режима и непрерывностью процесса производства и потребления электрической и тепловой энергии, называют энергетической системой (энергосистемой). Электрическая система, состоящая из подстанций и линий электропередачи различных напряжений, - часть энергосистемы.

Энергосистемы отдельных районов в свою очередь соединены между собой для параллельной работы и образуют крупные системы, например единая энергетическая система (ЕЭС) европейской части СССР, объединенные системы Сибири, Казахстана, Средней Азии и др.

Теплоэлектроцентрали и заводские электростанции обычно связаны с электросетью ближайшей энергосистемы по линиям генераторного напряжения 6 и 10 кВ или линиям более высокого напряжения (35 кВ и выше) через трансформаторные подстанции. Передача энергии, выработанной мощными районными электростанциями, в электросеть для снабжения потребителей осуществляется по линиям высокого напряжения (110 кВ и выше).



- Производство электрической энергии

Видеоурок 2: Задачи на переменный ток

Лекция: Переменный ток. Производство, передача и потребление электрической энергии

Переменный ток

Переменный ток - это колебания, которые могут происходить в цепи в результате подключения её к источнику переменного напряжения.

Всех нас окружает именно переменный ток - он имеется во всех цепях в квартирах, передача по проводам происходит именно тока переменного напряжения. Однако, практически все электроприборы работают от постоянно электричества. Именно поэтому на выходе из розетки ток выпрямляется и в виде постоянного переходит к бытовой технике.


Именно переменный ток проще всего получить и передать на любое расстояние.


При изучении переменного тока мы воспользуемся цепью, в которую будем подключать резистор, катушку и конденсатор. В данной цепи напряжение определяется по закону :

Как мы знаем, синус может быть отрицательным и положительным. Именно поэтому значение напряжения может принимать различное направление. При положительном направлении течения тока (против часовой стрелки) напряжение больше нуля, при отрицательном направлении - меньше нуля.


Резистор в цепи


Итак, давайте рассмотрим случай, когда в цепь с переменным током подключен только резистор. Сопротивление резистора называется активным. Будем рассматривать ток, который течет по цепи против часовой стрелки. В таком случае и ток, и напряжение будут иметь положительное значение.


Для определения силы тока в цепи используют следующую формулу из закона Ома :


В этих формулах I 0 и U 0 - максимальные значения тока и напряжения. Отсюда можно сделать вывод, что максимальное значение тока равно отношению максимального напряжения к активному сопротивлению:

Эти две величины изменяются в одинаковой фазе, поэтому графики величин имеют одинаковый вид, но разные амплитуды.


Конденсатор в цепи


Запомните! Невозможно получить постоянный ток в той цепи, где есть конденсатор. Он является местом для разрыва протекания тока и изменение его амплитуды. При этом переменный ток отлично течет по такой цепи, изменяя полярность конденсатора.


При рассматривании такой цепи будем предполагать, что в ней имеется исключительно конденсатор. Ток течет против часовой стрелки, то есть является положительным.


Как нам уже известно, напряжение на конденсаторе связано с его возможностью накопления заряда, то есть его величиной и ёмкостью.

Так как ток является первой производной от заряда, то можно определить, по какой формуле его можно вычислить, найдя производную с последней формулы:

Как можно заметить, в данном случае сила тока описывается законом косинуса в то время, как значение напряжения и заряда можно описать законом синуса. Это значит, что функции находятся в противоположной фазе и имеют аналогичный вид на графике.


Все мы знаем, что функции косинуса и синуса одинакового аргумента отличаются на 90 градусов друг от друга, поэтому можно получить следующие выражения:

Отсюда максимальное значение силы тока можно определить по формуле:

Величина в знаменателе - это и есть сопротивление на конденсаторе. Данное сопротивление называется емкостным. Находится и обозначается оно следующим образом:


При увеличении емкостного сопротивления, амплитудное значение тока падает.


Обратите внимание, в данной цепи использование закона Ома уместно только в том случае, когда необходимо определить максимальное значение тока, определить ток в любой момент времени по данному закону нельзя из-за разности фаз напряжения и силы тока.


Катушка в цепи


Рассмотрим цепь, в которой имеется катушка. Представим, что она не имеет активного сопротивления. В таком случае, казалось бы, ничего не должно препятствовать движению тока. Однако это не так. Все дело в том, что при прохождении тока через катушку начинает возникать вихревое поле, которое препятствует прохождению тока в результате образования тока самоиндукции.


Сила тока принимает следующее значение:

Снова можно заметить, что ток изменяется по закону косинуса, поэтому для данной цепи справедлив сдвиг фаз, который можно заметить и на графике:


Отсюда максимальное значение тока:

В знаменателе можем увидеть формулу, по которой определяется индуктивное сопротивление цепи.

Чем больше индуктивное сопротивление, тем меньшее значение имеет амплитуда тока.


Катушка, сопротивление и конденсатор в цепи.


Если в цепи одновременно присутствуют все виды сопротивлений, то определить значение величины тока можно следующим образом, преобразив закон Ома :

Знаменатель называется полным сопротивлением. Он состоит из суммы квадратов активного (R) и реактивного сопротивления, состоящего из емкостного и индуктивного. Полное сопротивление носит название "Импеданс".


Электроэнергия


Нельзя представить современную жизнь без использования электрических приборов, которые работают за счет энергии, которую происходит электрический ток. Весь технический прогресс основывается на электричестве.


Получение энергии из электрического тока имеет огромный ряд преимуществ:


1. Электрический ток достаточно просто производится, поскольку во всем мире существуют миллиарды электростанций, генераторов и прочих приспособлений для образования электроэнергии.


2. Передать электроэнергию можно на огромные расстояния за короткие сроки и без значительных потерь.


3. Имеется возможность преобразовывать электрическую энергию в механическую, световую, внутреннюю и другие виды.




ЭЛЕКТРОДИНАМИКА

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при любом изменении магнитного потока через поверхность, ограниченную этим контуром.

Переменный ток- это электрический ток, сила которого каким-либо образом меняется со временем.

Трансформатор- это устройство для повышения или понижения переменного напряжения.

1. Производство:

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

2. Передача:

Трансформатор -устройство, которое позволяет, как повышать, так и понижать напряжение. Преобразование переменного тока осуществляется с помощью трансформаторов. Трансформатор состоит из замкнутого железного сердечника, на который надеты две (иногда и более) катушки с проволочными обмотками. Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т. е. приборы и устройства, потребляющие электроэнергию, называется вторичной. Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в железном сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке.

3. Потребление:

Электронизация и автоматизация производства - важнейшие последствия "второй промышленной" или "микроэлектронной" революции в экономике развитых стран. С микроэлектроникой непосредственно связано и развитие комплексной автоматизации, качественно новый этап которой начался после изобретения в 1971 году микропроцессора - микроэлектронного логического устройства, встраиваемого в различные устройства для управления их работой. Очень бурно развивается наука в области средств связи и коммуникаций. Спутниковая связь используется уже не только как средство международной связи, но и в быту - спутниковые антенны не редкость и в городе.

Проблемы электросбережения. Россия имеет огромные перспективы по энергосбережению и одновременно является одной из самых расточительных в мире стран. Энергосбережение напрямую зависит от рационального использования существующих энергоресурсов. Огромные потери энергии характерны жилищно-коммунальному хозяйству. По подсчётам экспертов, около 70% теплопотерь происходит из-за халатного отношения потребителей. Часто в квартирах установлены батареи без регулировки мощности, вследствие чего они работают на всю и жильцам приходится открывать окна для снижения температуры в помещении. Для реализации потенциала энергосбережения в ЖКХ предполагается ввести повсеместное внедрение приборов учета, перейти к обязательным стандартам энергоэффективности для новых и реконструируемых зданий, модернизировать системы теплоснабжения зданий и сооружений, внедрить энергосберегающие системы освещения, внедрение энергосберегающих приборов и технологий на котельных, очистных сооружениях, предприятиях водоканала, предоставление бюджетным организациям прав распоряжения средствами, сэкономленными в результате реализации проектов по энергосбережению на срок до 5 лет и другое.



Техника безопасности в обращении с электрическим током. Опасным для человека считается ток от 25 В. В данной ситуации нужно четко отличать напряжение и силу тока. Убивает именно последняя. Для примера: голубые искорки статических разрядов имеют напряжение 7000 В, но ничтожную силу, тогда как напряжение розетки в 220 В, но с силой тока 10-16 А может стать причиной смерти. Более того, прохождение тока с силой 30-50 мА через сердечную мышцу уже может вызвать фибрилляцию (трепетание) сердечной мышцы и рефлекторную остановку сердца. Чем это закончится, вполне понятно. Если ток не заденет сердце (а пути электричества в человеческом организме весьма причудливы), то его воздействие может вызвать паралич дыхательных мышц, что тоже ничего хорошего не сулит.

Электромагнитное поле и электромагнитные волны. Электромагнитное поле - особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.

Скорость электромагнитных волн. Длина волны есть частное от деления скорости на частоту.

Принципы радиосвязи. Принципы радиосвязи заключаются в следующем. Переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстроменяющееся электромагнитное поле, которое распространяется в виде электромагнитной волны. Достигая приемной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик.

Производство электроэнергии в мире в наши дни играет огромную роль. Она - стержень государственной экономики любой страны. Гигантские суммы денег ежегодно вкладываются в производство и использование электроэнергии и научные исследования, связанные с этим. В повседневной жизни мы постоянно сталкиваемся с ее действием, поэтому современный человек должен иметь представление об основных процессах ее выработки и потребления.

Как получают электроэнергию

Производство электроэнергии осуществляется из других ее видов при помощи специальных устройств. Например, из кинетической. Для этого применяют генератор - прибор, преобразующий механическую работу в электрическую энергию.

Другие существующие способы ее получения - это, например, преобразование излучения светового диапазона фотоэлементами или солнечной батареей. Или производство электроэнергии путем химической реакции. Или использование потенциала радиоактивного распада либо теплоносителя.

Вырабатывают ее на электростанциях, которые бывают гидравлическими, атомными, тепловыми, солнечными, ветряными, геотермальными и проч. В основном все они работают по одной схеме - благодаря энергии первичного носителя определенным устройством вырабатывается механическая (энергия вращения), передаваемая затем в специальный генератор, где и вырабатывается электроток.

Основные виды электростанций

Производство и распределение электроэнергии в большинстве стран ведутся путем строительства и эксплуатации ТЭС - тепловых электростанций. Их функционирование требует большого запаса органического топлива, условия добычи которого из года в год усложняются, а стоимость растет. Коэффициент полезной отдачи топлива в ТЭС не слишком высок (в пределах 40%), а число экологически грязных отходов велико.

Все эти факторы снижают перспективность такого способа выработки.

Наиболее экономично производство электроэнергии гидроэнергетическими установками (ГЭС). КПД их доходит до 93%, себестоимость 1 кВт/ч впятеро дешевле других способов. Природный источник энергии таких станций практически неисчерпаем, количество работников - минимально, ими легко управлять. По развитию данной отрасли наша страна - признанный лидер.

К сожалению, темпы развития ограничены серьезными затратами и длительными сроками строительства ГЭС, связанными с их удаленностью от больших городов и магистралей, сезонным режимом рек и трудными условиям работы.

Кроме того, гигантские водохранилища ухудшают экологическую ситуацию - затапливают ценные земли вокруг водоемов.

Использование атомной энергии

В наши дни производство, передача и использование электроэнергии производятся атомными электростанциями - АЭС. Они устроены практически по тому же принципу, что и тепловые.

Главный их плюс - малое количество требующегося топлива. Килограмм обогащенного урана по своей производительности эквивалентен 2,5 тыс. тонн угля. Именно поэтому АЭС теоретически можно строить в любом районе независимо от наличия близлежащих топливных ресурсов.

В настоящее время запасы урана на планете значительно больше, чем минерального горючего, а воздействие АЭС на окружающую природу минимально при условии безаварийной работы.

Огромный и серьезный недостаток АЭС - вероятность страшной аварии с непредсказуемыми последствиями, отчего для их бесперебойной работы требуются очень серьезные меры по обеспечению безопасности. К тому же производство электроэнергии на АЭС регулируется с трудом - как для их запуска, так и для полной остановки понадобится несколько недель. И практически отсутствуют технологии утилизации опасных отходов.

Что такое электрический генератор

Производство и передача электроэнергии осуществимы благодаря электрогенератору. Это устройство преобразования любых видов энергии (тепловой, механической, химической) в электрическую. Принцип его действия построен на процессе электромагнитной индукции. ЭДС индуктируется в проводнике, который движется в магнитном поле, пересекает его силовые магнитные линии. Таким образом, проводник может служить источником электроэнергии.

Основа любого генератора - система электромагнитов, формирующих магнитное поле, и проводников, которые его пересекают. Большинство всех генераторов переменного тока основаны на применении вращающегося магнитного поля. Его неподвижную часть именуют статором, подвижную - ротором.

Понятие трансформатора

Трансформатор - электромагнитное статическое устройство, предназначенное для преобразования одной системы тока в другую (вторичную) при помощи электромагнитной индукции.

Первые трансформаторы в 1876 г. были предложены П. Н. Яблочковым. В 1885 г. венгерскими учеными разработаны промышленные однофазные приборы. В 1889-1891 гг. изобретен трехфазный трансформатор.

Простейший однофазный трансформатор состоит из стального сердечника и пары обмоток. Применяются они для распределения и передачи электроэнергии, ведь генераторы электростанций вырабатывают ее при напряжении от 6 до 24 кВт. Передавать ее выгодно при больших значениях (от 110 до 750 кВт). Для этого на электростанциях устанавливают повышающие трансформаторы.

Как используется электроэнергия

Ее львиная доля идет на снабжение электричеством предприятий промышленности. Производство потребляет до 70% всей вырабатываемой в стране электроэнергии. Эта цифра значительно разнится для отдельных регионов в зависимости от климатических условий и уровня индустриального развития.

Другая статья расходов - снабжение электротранспорта. От электросетей ЭЭС работают подстанции городского, междугороднего, промышленного электротранспорта, использующего постоянный ток. Для транспорта на переменном токе применяются понижающие подстанции, которые тоже потребляют энергию электростанций.

Другой сектор потребления электроэнергии - коммунально-бытовое снабжение. Потребителями здесь являются здания жилых районов любых населенных пунктов. Это дома и квартиры, административные здания, магазины, заведения образования, науки, культуры, здравоохранения, общественного питания и т. д.

Как происходит передача электроэнергии

Производство, передача и использование электроэнергии - три кита отрасли. Причем передать полученную мощность потребителям - самая сложная задача.

"Путешествует" она главным образом посредством ЛЭП - воздушных линий электропередачи. Хотя все чаще начинают применять кабельные линии.

Вырабатывается электроэнергия мощными агрегатами гигантских электростанций, а потребителями ее служат относительно небольшие приёмники, разбросанные по обширной территории.

Существует тенденция концентрировать мощности, связанная с тем, что с их увеличением уменьшаются относительные затраты возведения электростанций, а следовательно, и себестоимость получаемого киловатт-часа.

Единый энергокомплекс

На принятие решения о размещении крупной электростанции влияет ряд факторов. Это вид и количество имеющихся в наличии ресурсов, доступность транспортировки, климатические условия, включенность в единую энергосистему и т. д. Чаще всего электростанции строятся вдали от крупных очагов потребления энергии. Эффективность ее передачи на немалые расстояния влияет на успешную работу единого энергетического комплекса огромной территории.

Производство и передача электроэнергии должны происходить с минимальным количеством потерь, главная причина которых - нагрев проводов, т. е. увеличение внутренней энергии проводника. Для сохранения передаваемой на большие расстояния мощности нужно пропорционально увеличить напряжение и уменьшить в проводах силу тока.

Что такое ЛЭП

Математические расчеты показывают, что величина потерь в проводах на нагрев обратно пропорциональна квадрату напряжения. Именно поэтому электроэнергию на большие расстояния передают при помощи ЛЭП - высоковольтных линий электропередач. Между их проводами напряжение исчисляется десятками, а порой сотнями тысяч вольт.

Электростанции, расположенные неподалеку друг от друга, объединяются в единую энергосистему именно при помощи ЛЭП. Производство электроэнергии в России и ее передача ведутся путем централизованной энергетической сети, в которую входит огромное количество электростанций. Единое управление системой гарантирует постоянную подачу потребителям электроэнергии.

Немного истории

Как формировалась единая электрическая сеть в нашей стране? Попробуем заглянуть в прошлое.

До 1917 года производство электроэнергии в России велось недостаточными темпами. Страна отставала от развитых соседей, что отрицательно сказывалось на экономике и обороноспособности.

После Октябрьской революции проект электрификации России разрабатывался Государственной комиссией по электрификации России (сокращенно ГОЭЛРО), возглавляемой Г. М. Кржижановским. С ней сотрудничали более 200 ученых и инженеров. Контроль осуществлялся лично В. И. Лениным.

В 1920 г. был готов «План электрификации РСФСР», рассчитанный на 10-15 лет. Он включал восстановление прежней энергосистемы и строительство 30 новых электростанций, оборудованных современными турбинами и котлами. Главная идея плана - задействовать гигантские отечественные гидроэнергоресурсы. Предполагались электрификация и коренная реконструкция всего народного хозяйства. Упор делался на рост и развитие тяжёлой промышленности страны.

Знаменитый план ГОЭРЛО

Начиная с 1947 года СССР стал первым в Европе и вторым в мире производителем электроэнергии. Именно благодаря плану ГОЭЛРО была сформирована в кратчайшие сроки вся отечественная экономика. Производство и потребление электроэнергии в стране вышло на качественно новый уровень.

Выполнение намеченного стало возможным благодаря сочетанию сразу нескольких важных факторов: высокого уровня научных кадров страны, сохранившегося с дореволюционных времен материального потенциала России, централизации политической и экономической власти, свойству российского народа верить "верхам" и воплощать провозглашаемые идеи.

План доказал эффективность советской системы централизованной власти и государственного управления.

Результаты плана

В 1935 году принятая программа была выполнена и перевыполнена. Построено 40 электростанций вместо запланированных 30, введено мощностей почти втрое больше, чем предусматривалось по плану. Возведено 13 электроцентралей мощностью по 100 тыс. кВт каждая. Общая мощность российских ГЭС составила около 700 000 кВт.

В эти годы были возведены крупнейшие объекты стратегического значения, такие как всемирно известная Днепровская ГЭС. По суммарным показателям Единая советская энергосистема превзошла аналогичные системы самых развитых стран Нового и Старого Света. Производство электроэнергии по странам Европы в те годы значительно отставало от показателей СССР.

Развитие села

Если до революции в деревнях России электричества практически не существовало (небольшие электростанции, устанавливаемые крупными землевладельцами не в счет), то с реализацией плана ГОЭЛРО благодаря использованию электроэнергии сельское хозяйство получило новый толчок к развитию. На мельницах, лесопилках, зерноочистительных машинах появились электродвигатели, что способствовало модернизации отрасли.

Помимо того, электричество прочно вошло в быт горожан и селян, в буквальном смысле вырвав "темную Россию" из мрака.

I Введение
II Производство и использование электроэнергии
1. Генерация электроэнергии
1.1 Генератор
2. Использование электроэнергии
III Трансформаторы
1. Назначение
2. Классификация
3. Устройство
4. Характеристики
5. Режимы
5.1 Холостой ход
5.2 Режим короткого замыкания
5.3 Нагрузочный режим
IV Передача электроэнергии
V ГОЭЛРО
1. История
2. Результаты
VI Список использованной литературы

I. Введение

Электроэнергия, один из самых важных видов энергии, играет огромную роль в современном мире. Она является стержнем экономик государств, определяя их положение на международной арене и уровень развития. Огромные суммы денег вкладываются ежегодно в развитие научных отраслей, связанных с электроэнергией.
Электроэнергия является неотъемлемой частью повседневной жизни, поэтому важно владеть информацией об особенностях её производства и использования.

II. Производство и использование электроэнергии

1. Генерация электроэнергии

Генерация электроэнергии - производство электроэнергии посредством преобразования её из других видов энергии с помощью специальных технических устройств.
Для генерации электроэнергии используют:
Электрический генератор - электрическую машину, в которой механическая работа преобразуется в электрическую энергию.
Солнечную батарею или фотоэлемент - электронный прибор, который преобразует энергию электромагнитного излучения, в основном светового диапазона, в электрическую энергию.
Химические источники тока - преобразование части химической энергии в электрическую, посредством химической реакции.
Радиоизотопные источники электроэнергии - устройства, использующие энергию, выделяющуюся при радиоактивном распаде, для нагрева теплоносителя или преобразующие её в электроэнергию.
Электроэнергия вырабатывается на электростанциях: тепловых, гидравлических, атомных, солнечных, геотермальных, ветряных и других.
Практически на всех электростанциях, имеющих промышленное значение, используется следующая схема: энергия первичного энергоносителя с помощью специального устройства преобразовывается вначале в механическую энергию вращательного движения, которая передается в специальную электрическую машину - генератор, где вырабатывается электрический ток.
Основные три вида электростанций: ТЭС, ГЭС, АЭС
Ведущую роль в электроэнергетике многих стран играют тепловые электростанции (ТЭС).
Тепловые электростанции требуют огромного количества органического топлива, запасы же его сокращаются, а стоимость постоянно возрастает из-за все усложняющихся условий добычи и дальности перевозок. Коэффициент использования топлива в них довольно низок (не более 40%), а объемы отходов, загрязняющих окружающую среду, велики.
Экономические, технико-экономические и экологические факторы не позволяют считать тепловые электростанции перспективным способом получения электроэнергии.
Гидроэнергетические установки (ГЭС) являются самыми экономичными. Их КПД достигает 93 %, а стоимость одного кВт.ч в 5 раз дешевле, чем при других способах получения электроэнергии. Они используют неисчерпаемый источник энергии, обслуживаются минимальным количеством работ¬ников, хорошо регулируются. По величине и мощности отдельных гидростанций и агрегатов наша страна занимает ведущее положение в мире.
Но темпы развития сдерживают значительные затраты и сроки строительства, обусловленные удаленностью мест строительства ГЭС от крупных городов, отсутствие дорог, трудные условия строительства, подвержены влиянию сезонности режима рек, водохранилищами затапливаются большие площади ценных приречных земель, крупные водохранилища негативно воздействуют на экологическую ситуацию, мощные ГЭС могут быть построены только в местах наличия соответствующих ресурсов.
Атомные электростанции (АЭС) работают по одному принципу с тепловыми электростанциями, т. е. происходит преобразование тепловой энергии пара в механическую энергию вращения вала турбины, которая приводит в действие генератор, где механическая энергия преобразовывается в электрическую.
Главное достоинство АЭС - небольшое количество используемого топлива (1 кг обогащенного урана заменяет 2,5 тыс. т угля), вследствие чего АЭС могут быть построены в любых энергодефицитных районах. К тому же запасы урана на Земле превышают запасы традици-онного минерального топлива, а при безаварийной работе АЭС незначительно воздействуют на окружающую среду.
Главным недостатком АЭС является возможность аварий с катастрофическими последствиями, для предотвращения которых требуются серьезные меры безопасности. Кроме того, АЭС плохо регулируются (для их полной остановки или включения требуется несколько недель), не разработаны технологии переработки радиоактивных отходов.
Атомная энергетика выросла в одну из ведущих отраслей народного хозяйства и продолжает быстро развиваться, обеспечивая безопасность и экологическую чистоту.

1.1 Генератор

Электрический генератор - это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.
Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС Следовательно, такой проводник может нами рассматриваться как источник электрической энергии.
Способ получения индуктированной ЭДС, при котором проводник перемещается в магнитном поле, двигаясь вверх или вниз, очень неудобен при практическом его использовании. Поэтому в генераторах применяется не прямолинейное, а вращательное движение проводника.
Основными частями всякого генератора являются: система магнитов или чаще всего электромагнитов, создающих магнитное поле, и система проводников, пересекающих это магнитное поле.
Генератор переменного тока - электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока. Большинство генераторов переменного тока используют вращающееся магнитное поле.

При вращении рамки изменяется магнитный поток через нее, поэтому в ней индуцируется ЭДС. Так как с помощью токосъемника (колец и щеток) рамка соединена с внешней электрической цепью, то в рамке и внешней цепи возникает электрический ток.
При равномерном вращении рамки угол поворота изменяется по закону:

Магнитный поток через рамку также изменяется с течение времени, его зависимость определяется функцией:

где S − площадь рамки.
По закону электромагнитной индукции Фарадея ЭДС индукции, возникающая в рамке равна:

где - амплитуда ЭДС индукции.
Другая величина, которой характеризуется генератор, является сила тока, выражающаяся формулой:

где i — сила тока в любой момент времени, I m - амплитуда силы тока (максимальное по модулю значение силы тока), φ c — сдвиг фаз между колебаниями силы тока и напряжения.
Электрическое напряжение на зажимах генератора меняется по синусодальному или косинусоидальному закону:

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока. По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода:

2. Использование электроэнергии

Электроснабжение промышленных предприятий. Промышленные предприятия потребляют 30-70% электроэнергии, вырабатываемой в составе электроэнергетической системы. Значительный разброс промышленного потребления определяется индустриальной развитостью и климатическими условиями различных стран.
Электроснабжение электрифицированного транспорта. Выпрямительные подстанции электротранспорта на постоянном токе (городской, промышленный, междугородний) и понижающие ПС междугороднего электрического транспорта на переменном токе питаются электроэнергией от электрических сетей ЭЭС.
Электроснабжение коммунально-бытовых потребителей. К данной группе ПЭ относится широкий круг зданий, расположенных в жилых районах городов и населенных пунктов. Это - жилые здания, здания административно-управленческого назначения, учебные и научные заведения, магазины, здания здравоохранения, культурно-массового назначения, общественного питания и т.п.

III. Трансформаторы

Трансформатор - статическое электромагнитное устройство, имеющее две или большее число индуктивно-связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока.

Схема устройства трансформатора

1 - первичная обмотка трансформатора
2 - магнитопровод
3 - вторичная обмотка трансформатора
Ф - направление магнитного потока
U 1 - напряжение на первичной обмотке
U 2 - напряжение на вторичной обмотке

Первые трансформаторы с разомкнутым магнитопроводом предложил в 1876 г. П.Н. Яблочков, который применил их для питания электрической "свечи". В 1885 г. венгерские ученые М. Дери, О. Блати, К. Циперновский разработали однофазные промышленные трансформаторы с замкнутым магнитопроводом. В 1889-1891 гг. М.О. Доливо-Добровольский предложил трехфазный трансформатор.

1. Назначение

Трансформаторы широко применяются в различных областях:
Для передачи и распределения электрической энергии
Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6-24 кВ, а передавать электроэнергию на дальние расстояния выгодно при значительно больших напряжениях (110, 220, 330, 400, 500, и 750 кВ). Поэтому на каждой электростанции устанавливают трансформаторы, осуществляющие повышение напряжения.
Распределение электрической энергии между промышленными предприятиями, населёнными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий производится по воздушным и кабельным линиям, при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех распределительных узлах должны быть установлены трансформаторы, понижающие напряжение до величины 220, 380 и 660 В.
Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на выходе и входе преобразователя (преобразовательные трансформаторы).
Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др.
Для питания различных цепей радиоаппаратуры, электронной аппаратуры, устройств связи и автоматики, электробытовых приборов, для разделения электрических цепей различных элементов указанных устройств, для согласования напряжения и пр.
Для включения электроизмерительных приборов и некоторых аппаратов (реле и др.) в электрические цепи высокого напряжения или же в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопастности. (измерительные трансформаторы)

2. Классификация

Классификация трансформаторов:

  • По назначению: силовые общего(используются в линиях передачи и распределения электроэнергии) и специального применения (печные, выпрямительные, сварочные, радиотрансформаторы).
  • По виду охлаждения: с воздушным (сухие трансформаторы) и масляным (масляные трансформаторы) охлаждением.
  • По числу фаз на первичной стороне: однофазные и трёхфазные.
  • По форме магнитопровода: стержневые, броневые, тороидальные.
  • По числу обмоток на фазу: двухобмоточные, трёхобмоточные, многообмоточные (более трёх обмоток).
  • По конструкции обмоток: с концентрическими и чередующимися (дисковыми) обмотками.

3. Устройство

Простейший трансформатор (однофазный трансформатор) представляет собой устройство, состоящее из стального сердечника и двух обмоток.

Принцип устройства однофазного двухобмоточного трансформатора
Магнитопровод представляет собой магнитную систему трансформатора, по которой замыкается основной магнитный поток.
При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки.

Условное обозначение трансформатора:
а) - трансформатор со стальным сердечником, б) - трансформатор с сердечником из феррита

4. Характеристики трансформатора

  • Номинальная мощность трансформатора - мощность, на которую он рассчитан.
  • Номинальное первичное напряжение - напряжение, на которое рассчитана первичная обмотка трансформатора.
  • Номинальное вторичное напряжение - напряжение на зажимах вторичной обмотки, получающееся при холостом ходе трансформатора и номинальном напряжении на зажимах первичной обмотки.
  • Номинальные токи, определяются соответствующими номинальными значениями мощности и напряжения.
  • Высшее номинальное напряжение трансформатора - наибольшее из номинальных напряжений обмоток трансформатора.
  • Низшее номинальное напряжение - наименьшее из номинальных напряжений обмоток трансформатора.
  • Среднее номинальное напряжение - номинальное напряжение, являющееся промежуточным между высшим и низшим номинальным напряжением обмоток трансформатора.

5. Режимы

5.1 Холостой ход

Режимом холостого хода - режим работы трансформатора, при котором вторичная обмотка трансформатора разомкнута, а на зажимы первичной обмотки подано переменное напряжение.

В первичной обмотке трансформатора, соединенной с источником переменного тока течёт ток, в результате чего в сердечнике появляется переменный магнитный поток Φ , пронизывающий обе обмотки. Так как Φ одинаков в обеих обмотках трансформатора, то изменение Φ приводит к появлению одинаковой ЭДС индукции в каждом витке первичной и вторичной обмоток. Мгновенное значение ЭДС индукции e в любом витке обмоток одинаково и определяется формулой:

где - амплитуда ЭДС в одном витке.
Амплитуда ЭДС индукции в первичной и вторичной обмотках будет пропорционально числу витков в соответствующей обмотке:

где N 1 и N 2 - число витков в них.
Падение напряжения на первичной обмотке, как на резисторе, очень мало, по сравнению с ε 1 , и поэтому для действующих значений напряжения в первичной U 1 и вторичной U 2 обмотках будет справедливо следующее выражение:

K - коэффициент трансформации. При K >1 трансформатор понижающий, а при K <1 - повышающий.

5.2 Режим короткого замыкания

Режимом короткого замыкания - режим, когда выводы вторичной обмотки замкнуты токопроводом с сопротивлением, равным нулю (Z =0).

Короткое замыкание трансформатора в условиях эксплуатации создает аварийный режим, так как вторичный ток, а следовательно, и первичный увеличиваются в несколько десятков раз по сравнению с номинальным. Поэтому в цепях с трансформаторами предусматривают защиту, которая при коротком замыкании автоматически отключает трансформатор.

Необходимо различать два режима короткого замыкания:

Аварийный режим - тогда, когда замкнута вторичная обмотка при номинальном первичном напряжении. При таком замыкании токи возрастают в 15¸ 20 раз. Обмотка при этом деформируется, а изоляция обугливается. Железо так же подгорает. Это тяжелый режим. Максимальная и газовая защита отключает трансформатор от сети при аварийном коротком замыкании.

Опытный режим короткого замыкания - это режим, когда вторичная обмотка накоротко замкнута, а к первичной обмотке подводится такое пониженное напряжение, когда по обмоткам протекает номинальный ток - это U K - напряжение короткого замыкания.

В лабораторных условиях можно провести испытательное короткое замыкание трансформатора. При этом выраженное в процентах напряжение U K , при I 1 =I 1ном обозначают u K и называют напряжением короткого замыкания трансформатора:

где U 1ном - номинальное первичное напряжение.

Это характеристика трансформатора, указываемая в паспорте.

5.3 Нагрузочный режим

Нагрузочный режим трансформатора - режим работы трансформатора при наличии токов не менее чем в двух его основных обмотках, каждая из которых замкнута на внешнюю цепь, при этом не учитываются токи, протекающие в двух или более обмотках в режиме холостого хода:

Если к первичной обмотке трансформатора подключить напряжение U 1 , а вторичную обмотку соединить с нагрузкой, в обмотках появятся токи I 1 и I 2 . Эти токи создадут магнитные потоки Φ 1 и Φ 2 , направленные навстречу друг другу. Суммарный магнитный поток в магнитопроводе уменьшается. Вследствие этого индуктированные суммарным потоком ЭДС ε 1 и ε 2 уменьшаются. Действующее значение напряжения U 1 остается неизменным. Уменьшение ε 1 вызывает увеличение тока I 1 :

При увеличении тока I 1 поток Φ 1 увеличивается ровно настолько, чтобы скомпенсировать размагничивающее действие потока Φ 2 . Вновь восстанавливается равновесие при практически прежнем значении суммарного потока.

IV. Передача электроэнергии

Передача электроэнергии от электростанции к потребителям - одна из важнейших задач энергетики.
Электроэнергия передаётся преимущественно по воздушным линиям электропередачи (ЛЭП) переменного тока, хотя наблюдается тенденция ко всё более широкому применению кабельных линий и линий постоянного тока.

Необходимость передачи электроэнергии на расстояние обусловлена тем, что электроэнергия вырабатывается крупными электростанциями с мощными агрегатами, а потребляется сравнительно маломощными электроприёмниками, распределёнными на значительной территории. Тенденция к концентрации генерирующих мощностей объясняется тем, что с их ростом снижаются относительные затраты на сооружение электростанций и уменьшается стоимость вырабатываемой электроэнергии.
Размещение мощных электростанций производится с учётом целого ряда факторов, таких, например, как наличие энергоресурсов, их вид, запасы и возможности транспортировки, природные условия, возможность работы в составе единой энергосистемы и т.п. Часто такие электростанции оказываются существенно удалёнными от основных центров потребления электроэнергии. От эффективности передачи электроэнергии на расстояние зависит работа единых электроэнергетических систем, охватывающих обширные территории.
Передавать электроэнергию от мест её производства к потребителям необходимо с минимальными потерями. Главная причина этих потерь - превращение части электроэнергии во внутреннюю энергию проводов, их нагрев.

Согласно закону Джоуля-Ленца, количество теплоты Q , выделяемое за время t в проводнике сопротивлением R при прохождении тока I , равно:

Из формулы следует, что для уменьшения нагрева проводов необходимо уменьшать силу тока в них и их сопротивление. Чтобы уменьшить сопротивление проводов, увеличивают их диаметр, однако, очень толстые провода, висящие между опорами линий электропередач, могут оборваться под действием силы тяжести, особенно, при снегопаде. Кроме того, при увеличении толщины проводов растёт их стоимость, а они сделаны из относительно дорогого металла - меди. Поэтому более эффективным способом минимизации энергопотерь при передаче электроэнергии служит уменьшение силы тока в проводах.
Таким образом, чтобы уменьшить нагрев проводов при передаче электроэнергии на дальние расстояния, необходимо сделать силу тока в них как можно меньше.
Мощность тока равна произведению силы тока на напряжение:

Следовательно, для сохранения мощности, передаваемой на дальние расстояния, надо во столько же раз увеличить напряжение, во сколько была уменьшена сила тока в проводах:

Из формулы следует, что при постоянных значениях передаваемой мощности тока и сопротивления проводов потери на нагрев в проводах обратно пропорциональны квадрату напряжению в сети. Поэтому для передачи электроэнергии на расстояния в несколько сотен километров используют высоковольтные линии электропередач (ЛЭП), напряжение между проводами которых составляет десятки, а иногда сотни тысяч вольт.
С помощью ЛЭП соседние электростанции объединяются в единую сеть, называемую энергосистемой. Единая энергосистема России включает в себя огромное число электростанций, управляемых из единого центра и обеспечивает бесперебойную подачу электроэнергии потребителям.

V. ГОЭЛРО

1. История

ГОЭЛРО (Государственная комиссия по электрификации России) - орган, созданный 21 февраля 1920 года для разработки проекта электрификации России после Октябрьской революции 1917 года.

К работам комиссии было привлечено свыше 200 деятелей науки и техники. Возглавлял комиссию Г.М. Кржижановский. ЦК Коммунистической партии и лично В. И. Ленин повседневно направляли работу комиссии ГОЭЛРО, определяли основные принципиальные положения плана электрификации страны.

К концу 1920 комиссия проделала огромную работу и подготовила «План электрификации РСФСР» - том в 650 страниц текста с картами и схемами электрификации районов.
План ГОЭЛРО, рассчитанный на 10-15 лет, реализовал ленинские идеи электрификации всей страны и создания крупной индустрии.
В области электроэнергетического хозяйства план состоял из программы, рассчитанной на восстановление и реконструкцию довоенной электроэнергетики, строительство 30 районных электрических станций, сооружение мощных районных тепловых электростанций. Электростанции намечалось оборудовать крупными для того времени котлами и турбинами.
Одной из основных идей плана являлось широкое использование огромных гидроэнергоресурсов страны. Предусматривались коренная реконструкция на базе электрификации всех отраслей народного хозяйства страны и преимущественно рост тяжёлой промышленности, рациональное размещение промышленности по всей территории страны.
Осуществление плана ГОЭЛРО началось в трудных условиях Гражданской войны и хозяйственной разрухи.

С 1947 СССР занимал 1-е место в Европе и 2-е в мире по производству электроэнергии.

План ГОЭЛРО сыграл в жизни нашей страны огромную роль: без него не удалось бы вывести СССР в столь короткие сроки в число самых развитых в промышленном отношении стран мира. Реализация этого плана сформировала всю отечественную экономику и до сих пор в значительной мере ее определяет.

Составление и выполнение плана ГОЭЛРО стали возможным и исключительно благодаря сочетанию многих объективных и субъективных факторов: немалого промышленно-экономического потенциала дореволюционной России, высокого уровня российской научно-технической школы, сосредоточения в одних руках всей экономической и политической власти, ее силы и воли, а также традиционного соборно-общинного менталитета народа и его послушно-доверительного отношения к верховным правителям.
План ГОЭЛРО и его реализация доказали высокую эффективность системы государственного планирования в условиях жестко централизованной власти и предопределили развитие этой системы на долгие десятилетия.

2. Результаты

К концу 1935 программа электростроительства была в несколько раз перевыполнена.

Вместо 30 было построено 40 районных электростанций, на которых вместе с другими крупными промышленными станциями было введено 6914 тыс. кВт мощностей (из них районных 4540 тыс. кВт - почти в три раза больше, чем по плану ГОЭЛРО).
В 1935 г. среди районных электростанций было 13 электроцентралей по 100 тыс. кВт.

До революции мощность самой крупной электростанции России (1-й Московской) составляла всего 75 тыс. кВт; не было ни одной крупной ГЭС. К началу 1935 г. общая установленная мощность гидроэлектростанций достигла почти 700 тыс. кВт.
Были построены крупнейшая в то время в мире Днепровская ГЭС, Свирская 3-я, Волховская и др. В высшей точке своего развития Единая энергосистема СССР по многим показателям превосходила энергосистемы развитых стран Европы и Америки.


Электричество было практически неизвестно в деревнях до революции. Большие землевладельцы устанавливали небольшие электростанции, но число их было мало.

Электроэнергия стала применяться в сельском хозяйстве: в мельницах, кормовых резцах, зерноочистительных машинах, на лесопилках; в промышленности, а позже - в быту.

Список использованной литературы

Веников В. А., Дальние электропередачи, М.- Л., 1960;
Совалов С. А., Режимы электропередач 400-500 кв. ЕЭС, М., 1967;
Бессонов, Л.А. Теоретические основы электротехники. Электрические цепи: учебник / Л.А. Бессонов. — 10-е изд. — М. : Гардарики, 2002.
Электротехника: Учебно-методический комплекс. /И. М. Коголь, Г. П. Дубовицкий, В. Н. Бородянко, В. С. Гун, Н. В. Клиначёв, В. В. Крымский, А. Я. Эргард, В. А. Яковлев; Под редакцией Н. В. Клиначёва. — Челябинск, 2006-2008.
Электрические системы, т. 3 - Передача энергии переменным и постоянным током высокого напряжения, М., 1972.

Извините, ничего не найдено.

Вам также будет интересно:

Клод шеннон краткая биография и интересные факты
Анатолий Ушаков, д. т. н, проф. каф. систем управления и информатики, университет «ИТМО»...
Воспаление придатков: причины, диагностика, лечение
Беспокоят тянущие или резкие боли внизу живота, нерегулярные месячные или их отсутствие,...
Болгарский красный сладкий перец: польза и вред
Сладкий (болгарский) перец – овощная культура, выращиваемая в средних и южных широтах. Овощ...
Тушеная капуста - калорийность
Белокочанная капуста - низкокалорийный овощ, и хотя в зависимости от способа тепловой...
Снежнянский городской методический кабинет
Отдел образования – это группа структурных подразделений: Аппарат: Начальник отдела...