Дети, мода, аксессуары. Уход за телом. Здоровье. Красота. Интерьер

Для чего нужны синонимы в жизни

Календарь Летоисчисление астрономия

Созвездие телец в астрономии, астрологии и легендах

Правила русской орфографии и пунктуации полный академический справочник Проп правила русской орфографии и пунктуации

Внеклассное мероприятие "Адыгея – родина моя!

Самые правдивые гадания на любовь

Луна таро значение в отношениях

Шницель из свинины на сковороде

Лихорадка Эбола — симптомы, лечение, история вируса

Ученым удалось измерить уровень радиации на марсе Максимальная интенсивность солнечного излучения на поверхности марса

Биография екатерины романовны дашковой Биография дашковой екатерины романовой

Сонник: к чему снится Собирать что-то

Cонник спасать, к чему снится спасать во сне видеть

Чудотворная молитва ангелу-хранителю о помощи

Со свинным рылом да в калашный ряд Минфин придумал для россиян «гарантированный пенсионный продукт»

Расстояние между параллельными скрещивающимися прямыми. Четыре способа решения задач на нахождение расстояния между скрещивающимися прямыми

С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых ("канонический" или "параметрический"), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку "Решить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние между прямыми в пространстве − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz L 1 и L 2:

. (1)
, (2)

где M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) − точки, лежащие на прямых L 1 и L 2 , а q 1 ={m 1 , p 1 , l 1 } и q 2 ={m 2 , p 2 , l 2 } − направляющие векторы прямых L 1 и L 2 , соответственно.

Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.

1. Расстояние между параллельными прямыми в пространстве

Рассмотрим два метода вычисления расстояния между прямыми.

Метод 1. От точки M 1 прямой L 1 проводим плоскость α , перпендикулярно прямой L 2 . Находим точку M 3 (x 3 , y 3 , y 3) пересечения плоскости α и прямой L 3 . По сути мы находим проекцию точки M 1 на прямую L 2 . Как найти проекцию точки на прямую посмотрите . Далее вычисляем расстояние между точками M 1 (x 1 , y 1 , z 1) и M 3 (x 3 , y 3 , z 3):

Пример 1. Найти расстояние между прямыми L 1 и L 2:

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M

Подставляя значения m 2 , p 2 , l 2 , x 1 , y 1 , z 1 в (5) получим:

Найдем точку пересечения прямой L 2 и плоскости α , для этого построим параметрическое уравнение прямой L 2 .

Чтобы найти точку пересечения прямой L 2 и плоскости α , подставим значения переменных x , y , z из (7) в (6):

Подставляя полученное значение t в (7), получим точку пересеченияпрямой L 2 и плоскости α :

Остается найти расстояние между точками M 1 и M 3:

L 1 и L 2 равно d =7.2506.

Метод 2. Найдем расстояние между прямыми L 1 и L 2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L 1 и L 2 . Если направляющие векторы прямых L 1 и L 2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q 1 =λ q 2 , то прямые L 1 и L 2 параллельны.

Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов и q 1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d , разделив площадь на основание q 1 параллелограмма.

q 1:

.

Расстояние между прямыми L 1 и L 2 равно:

,
,

Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M 2 (8, 4, 1) и имеет направляющий вектор

q 2 ={m 2 , p 2 , l 2 }={2, −4, 8}

Векторы q 1 и q 2 коллинеарны. Следовательно прямые L 1 и L 2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.

Построим вектор ={x 2 −x 1 , y 2 −y 1 , z 2 −z 1 }={7, 2, 0}.

Вычислим векторное произведение векторов и q 1 . Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k , а остальные строки заполнены элементами векторов и q 1:

Таким образом, результатом векторного произведения векторов и q 1 будет вектор:

Ответ: Расстояние между прямыми L 1 и L 2 равно d =7.25061.

2. Расстояние между скрещивающимися прямыми в пространстве

Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L 1 и L 2 (уравнения (1) и (2)).

Пусть прямые L 1 и L 2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L 1 и L 2 нужно построить параллельные плоскости α 1 и α 2 так, чтобы прямая L 1 лежал на плоскости α 1 а прямая L 2 − на плоскости α 2 . Тогда расстояние между прямыми L 1 и L 2 равно расстоянию между плоскостями L 1 и L 2 (Рис. 3).

где n 1 ={A 1 , B 1 , C 1 } − нормальный вектор плоскости α 1 . Для того, чтобы плоскость α 1 проходила через прямую L 1 , нормальный вектор n 1 должен быть ортогональным направляющему вектору q 1 прямой L 1 , т.е. скалярное произведение этих векторов должен быть равным нулю:

Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A 1 , B 1 , C 1 , D 1 , и подставляя в уравнение

Плоскости α 1 и α 2 параллельны, следовательно полученные нормальные векторыn 1 ={A 1 , B 1 , C 1 } и n 2 ={A 2 , B 2 , C 2 } этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n 2 совпадал с нормальным вектором уравнения (30).

Тогда расстояние между параллельными плоскостями вычисляется формулой:

(33)

Решение. Прямая L 1 проходит через точку M 1 (x 1 , y 1 , z 1)=M 1 (2, 1, 4) и имеет направляющий вектор q 1 ={m 1 , p 1 , l 1 }={1, 3, −2}.

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M 2 (6, −1, 2) и имеет направляющий вектор q 2 ={m 2 , p 2 , l 2 }={2, −3, 7}.

Построим плоскость α 1 , проходящую через прямую L 1 , параллельно прямой L 2 .

Поскольку плоскость α 1 проходит через прямую L 1 , то она проходит также через точку M 1 (x 1 , y 1 , z 1)=M 1 (2, 1, 4) и нормальный вектор n 1 ={m 1 , p 1 , l 1 } плоскости α 1 перпендикулярна направляющему вектору q 1 прямой L 1 . Тогда уравнение плоскости должна удовлетворять условию:

Так как плоскость α 1 должна быть параллельной прямой L 2 , то должна выполнятся условие:

Представим эти уравнения в матричном виде:

(40)

Решим систему линейных уравнений (40) отностительно A 1 , B 1 , C 1 , D 1.

\(\blacktriangleright\) Скрещивающиеся прямые – это прямые, через которые нельзя провести одну плоскость.

Признак скрещивающихся прямых: если первая прямая пересекает плоскость, в которой лежит вторая прямая, в точке, не лежащей на второй прямой, то такие прямые скрещиваются.

\(\blacktriangleright\) Т.к. через одну из скрещивающихся прямых проходит ровно одна плоскость, параллельная другой прямой, то расстояние между скрещивающимися прямыми - это расстояние между одной из этих прямых и плоскостью, проходящей через вторую прямую параллельно первой.

Таким образом, если прямые \(a\) и \(b\) скрещиваются, то:

Шаг 1. Провести прямую \(c\parallel b\) так, чтобы прямая \(c\) пересекалась с прямой \(a\) . Плоскость \(\alpha\) , проходящая через прямые \(a\) и \(c\) , и будет плоскостью, параллельной прямой \(b\) .

Шаг 2. Из точки пересечения прямых \(a\) и \(c\) (\(a\cap c=H\) ) опустить перпендикуляр \(HB\) на прямую \(b\) (первый способ).

Или из любой точки \(B"\) прямой \(b\) опустить перпендикуляр на прямую \(c\) (второй способ).


В зависимости от условия задачи какой-то из этих двух способов может быть гораздо удобнее другого.

Задание 1 #2452

Уровень задания: Легче ЕГЭ

В кубе \(ABCDA_1B_1C_1D_1\) , ребро которого равно \(\sqrt{32}\) , найдите расстояние между прямыми \(DB_1\) и \(CC_1\) .

Прямые \(DB_1\) и \(CC_1\) скрещиваются по признаку, т.к. прямая \(DB_1\) пересекает плоскость \((DD_1C_1)\) , в которой лежит \(CC_1\) , в точке \(D\) , не лежащей на \(CC_1\) .


Расстояние между скрещивающимися прямыми будем искать как расстояние между прямой \(CC_1\) и плоскостью, проходящей через \(DB_1\) параллельно \(CC_1\) . Т.к. \(DD_1\parallel CC_1\) , то плоскость \((B_1D_1D)\) параллельна \(CC_1\) .
Докажем, что \(CO\) – перпендикуляр на эту плоскость. Действительно, \(CO\perp BD\) (как диагонали квадрата) и \(CO\perp DD_1\) (т.к. ребро \(DD_1\) перпендикулярно всей плоскости \((ABC)\) ). Таким образом, \(CO\) перпендикулярен двум пересекающимся прямым из плоскости, следовательно, \(CO\perp (B_1D_1D)\) .

\(AC\) , как диагональ квадрата, равна \(AB\sqrt2\) , то есть \(AC=\sqrt{32}\cdot \sqrt2=8\) . Тогда \(CO=\frac12\cdot AC=4\) .

Ответ: 4

Задание 2 #2453

Уровень задания: Сложнее ЕГЭ

Дан куб \(ABCDA_1B_1C_1D_1\) . Найдите расстояние между прямыми \(AB_1\) и \(BC_1\) , если ребро куба равно \(a\) .

1) Заметим, что эти прямые скрещиваются по признаку, т.к. прямая \(AB_1\) пересекает плоскость \((BB_1C_1)\) , в которой лежит \(BC_1\) , в точке \(B_1\) , не лежащей на \(BC_1\) .
Расстояние между скрещивающимися прямыми будем искать как расстояние между прямой \(BC_1\) и плоскостью, проходящей через \(AB_1\) параллельно \(BC_1\) .

Для этого проведем \(AD_1\) - она параллельна \(BC_1\) . Следовательно, по признаку плоскость \((AB_1D_1)\parallel BC_1\) .

2) Опустим перпендикуляр \(C_1H\) на эту плоскость и докажем, что точка \(H\) упадет на продолжение отрезка \(AO\) , где \(O\) – точка пересечения диагоналей квадрата \(A_1B_1C_1D_1\) .
Действительно, т.к. по свойству квадрата \(C_1O\perp B_1D_1\) , то по теореме о трех перпендикуляр проекция \(HO\perp B_1D_1\) . Но \(\triangle AB_1D_1\) равнобедренный, следовательно, \(AO\) – медиана и высота. Значит, точка \(H\) должна лежать на прямой \(AO\) .

3) Рассмотрим плоскость \((AA_1C_1)\) .


\(\triangle AA_1O\sim \triangle OHC_1\) по двум углам (\(\angle AA_1O=\angle OHC_1=90^\circ\) , \(\angle AOA_1=\angle HOC_1\) ). Таким образом,

\[\dfrac{C_1H}{AA_1}=\dfrac{OC_1}{AO} \qquad (*)\]

По теореме Пифагора из \(\triangle AA_1O\) : \

Следовательно, из \((*)\) теперь можно найти перпендикуляр

Ответ:

\(\dfrac a{\sqrt3}\)

Задание 3 #2439

Уровень задания: Сложнее ЕГЭ

\(OK\) перпендикулярен прямой \(A_1B\) .
Действительно, проведем \(KH\parallel B_1C_1\) (следовательно, \(H\in AB_1\) ). Тогда т.к. \(B_1C_1\perp (AA_1B_1)\) , то и \(KH\perp (AA_1B_1)\) . Тогда по теореме о трех перпендикулярах (т.к. проекция \(HO\perp A_1B\) ) наклонная \(KO\perp A_1B\) , чтд.
Таким образом, \(KO\) – искомое расстояние.

Заметим, что \(\triangle AOK\sim \triangle AC_1B_1\) (по двум углам). Следовательно,

\[\dfrac{AO}{AC_1}=\dfrac{OK}{B_1C_1} \quad \Rightarrow \quad OK=\dfrac{\sqrt6\cdot \sqrt2}{2\sqrt3}=1.\]

Среди огромного количества стереометрических задач в учебниках геометрии, в различных сборниках задач, пособиях по подготовке в ВУЗы крайне редко встречаются задачи на нахождение расстояния между скрещивающимися прямыми. Возможно, это обусловлено как узостью их практического применения (относительно школьной программы, в отличие от "выигрышных" задач на вычисление площадей и объемов), так и сложностью данной темы.

Практика проведения ЕГЭ показывает, что многие учащиеся вообще не приступают к выполнению заданий по геометрии, входящих в экзаменационную работу. Для обеспечения успешного выполнения геометрических заданий повышенного уровня сложности необходимо развивать гибкость мышления, способность анализировать предполагаемую конфигурацию и вычленять в ней части, рассмотрение которых позволяет найти путь решения задачи.

Школьный курс предполагает изучение четырех способов решения задач на нахождение расстояния между скрещивающимися прямыми. Выбор способа обусловлен, в первую очередь, особенностями конкретной задачи, предоставленными ею возможностями для выбора, и, во вторую очередь, способностями и особенностями "пространственного мышления" конкретного учащегося. Каждый из этих способов позволяет решить самую главную часть задачи - построение отрезка, перпендикулярного обеим скрещивающимся прямым (для вычислительной же части задач деление на способы не требуется).

Основные способы решения задач на нахождение расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.

Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся проекцией одной из скрещивающихся прямых, на перпендикулярную ей плоскость (так называемый "экран") до проекции другой прямой на ту же самую плоскость.

Проведем демонстрацию всех четырех способов на следующей простейшей задаче : "В кубе с ребром а найти расстояние между любым ребром и диагональю не пересекающей его грани". Ответ: .

Рисунок 1

h скр перпендикулярна плоскости боковой грани, содержащей диагональ d и перпендикулярна ребру, следовательно, h скр и является расстоянием между ребром а и диагональю d .

Рисунок 2

Плоскость A параллельна ребру и проходит через данную диагональ, следовательно, данная h скр является не только расстоянием от ребра до плоскости A, но и расстоянием от ребра до данной диагонали.

Рисунок 3

Плоскости A и B параллельны и проходят через две данные скрещивающиеся прямые, следовательно, расстояние между этими плоскостями равно расстоянию между двумя скрещивающимися прямыми.

Рисунок 4

Плоскость A перпендикулярна ребру куба. При проекции на A диагонали d данная диагональ обращается в одну из сторон основания куба. Данная h скр является расстоянием между прямой, содержащей ребро, и проекцией диагонали на плоскость C, а значит и между прямой, содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого способа для изучаемых в школе многогранников.

Применение первого способа достаточно ограничено: он хорошо применяется лишь в некоторых задачах, так как достаточно сложно определить и обосновать в простейших задачах точное, а в сложных - ориентировочное местоположение общего перпендикуляра двух скрещивающихся прямых. Кроме того, при нахождении длины этого перпендикуляра в сложных задачах можно столкнуться с непреодолимыми трудностями.

Задача 1. В прямоугольном параллелепипеде с размерами a, b, h найти расстояние между боковым ребром и не пересекающейся с ним диагональю основания.

Рисунок 5

Пусть AHBD. Так как А 1 А перпендикулярна плоскости АВСD , то А 1 А AH.

AH перпендикулярна обеим из двух скрещивающихся прямых, следовательно AH?- расстояние между прямыми А 1 А и BD. В прямоугольном треугольнике ABD, зная длины катетов AB и AD, находим высоту AH, используя формулы для вычисления площади прямоугольного треугольника. Ответ:

Задача 2. В правильной 4-угольной пирамиде с боковым ребром L и стороной основания a найти расстояние между апофемой и стороной основания, пересекающей боковую грань, содержащую эту апофему.

Рисунок 6

SHCD как апофема, ADCD, так как ABCD - квадрат. Следовательно, DH - расстояние между прямыми SH и AD. DH равно половине стороны CD. Ответ:

Применение этого способа также ограничено в связи с тем, что если можно быстро построить (или найти уже готовую) проходящую через одну из скрещивающихся прямых плоскость, параллельную другой прямой, то затем построение перпендикуляра из любой точки второй прямой к этой плоскости (внутри многогранника) вызывает трудности. Однако в несложных задачах, где построение (или отыскивание) указанного перпендикуляра трудностей не вызывает, данный способ является самым быстрым и легким, и поэтому доступен.

Задача 2. Решение уже указанной выше задачи данным способом особых трудностей не вызывает.

Рисунок 7

Плоскость EFM параллельна прямой AD, т. к AD || EF. Прямая MF лежит в этой плоскости, следовательно, расстояние между прямой AD и плоскостью EFM равно расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO, следовательно, OH(EFM), следовательно, OH - расстояние между прямой AD и плоскостью EFM, а значит, и расстояние между прямой AD и прямой MF. Находим OH из треугольника AOD.

Задача 3. В прямоугольном параллелепипеде с размерами a,b и h найти расстояние между боковым ребром и не пересекающейся с ним диагональю параллелепипеда.

Рисунок 8

Прямая AA 1 параллельна плоскости BB 1 D 1 D, B 1 D принадлежит этой плоскости, следовательно расстояние от AA 1 до плоскости BB 1 D 1 D равно расстоянию между прямыми AA 1 и B 1 D. Проведем AHBD. Также, AH B 1 B, следовательно AH(BB 1 D 1 D), следовательно AHB 1 D, т. е. AH - искомое расстояние. Находим AH из прямоугольного треугольника ABD.

Ответ:

Задача 4. В правильной шестиугольной призме A:F 1 c высотой h и стороной основания a найти расстояние между прямыми:

Рисунок 9 Рисунок 10

а) AA 1 и ED 1 .

Рассмотрим плоскость E 1 EDD 1 . A 1 E 1 EE 1 , A 1 E 1 E 1 D 1 , следовательно

A 1 E 1 (E 1 EDD 1). Также A 1 E 1 AA 1 . Следовательно, A 1 E 1 является расстоянием от прямой AA 1 до плоскости E 1 EDD 1 . ED 1 (E 1 EDD 1)., следовательно AE 1 - расстояние от прямой AA 1 до прямой ED 1 . Находим A 1 E 1 из треугольника F 1 A 1 E 1 по теореме косинусов. Ответ:

б) AF и диагональю BE 1 .

Проведем из точки F прямую FH перпендикулярно BE. EE 1 FH, FHBE, следовательно FH(BEE 1 B 1), следовательно FH является расстоянием между прямой AF и (BEE 1 B 1), а значит и расстоянием между прямой AF и диагональю BE 1 . Ответ:

СПОСОБ III

Применение этого способа крайне ограничено, так как плоскость, параллельную одной из прямых (способ II) строить легче, чем две параллельные плоскости, однако способ III можно использовать в призмах, если скрещивающиеся прямые принадлежат параллельным граням, а также в тех случаях, когда в многограннике несложно построить параллельные сечения, содержащие заданные прямые.

Задача 4.

Рисунок 11

а) Плоскости BAA 1 B 1 и DEE 1 D 1 параллельны, так как AB || ED и AA 1 || EE 1 . ED 1 DEE 1 D 1 , AA 1 (BAA 1 B 1), следовательно, расстояние между прямыми AA 1 и ED 1 равно расстоянию между плоскостями BAA 1 B 1 и DEE 1 D 1 . A 1 E 1 AA 1 , A 1 E 1 A 1 B 1 , следовательно, A 1 E 1 BAA 1 B 1 . Аналогично доказываем, что A 1 E 1 (DEE 1 D 1). Т.о., A 1 E 1 является расстоянием между плоскостями BAA 1 B 1 и DEE 1 D 1 , а значит, и между прямыми AA 1 и ED 1 . Находим A 1 E 1 из треугольника A 1 F 1 E 1 , который является равнобедренным с углом A 1 F 1 E 1 , равным . Ответ:

Рисунок 12

б) Расстояние между AF и диагональю BE 1 находится аналогично.

Задача 5. В кубе с ребром а найти расстояние между двумя непересекающимися диагоналями двух смежных граней.

Данная задача рассматривается как классическая в некоторых пособиях, но, как правило, ее решение дается способом IV, однако является вполне доступной для решения с помощью способа III.

Рисунок 13

Некоторую трудность в данной задаче вызывает доказательство перпендикулярности диагонали A 1 C обеим параллельным плоскостям (AB 1 D 1 || BC 1 D). B 1 CBC 1 и BC 1 A 1 B 1 , следовательно, прямая BC 1 перпендикулярна плоскости A 1 B 1 C, и следовательно, BC 1 A 1 C. Также, A 1 CBD. Следовательно, прямая A 1 C перпендикулярна плоскости BC 1 D. Вычислительная же часть задачи особых трудностей не вызывает, так как h скр = EF находится как разность между диагональю куба и высотами двух одинаковых правильных пирамид A 1 AB 1 D 1 и CC 1 BD.

СПОСОБ IV.

Данный способ имеет достаточно широкое применение. Для задач средней и повышенной трудности его можно считать основным. Нет необходимости применять его только тогда, когда один из трех предыдущих способов работает проще и быстрее, так как в таких случаях способ IV может только усложнить решение задачи, или сделать его труднодоступным. Данный способ очень выгодно использовать в случае перпендикулярности скрещивающихся прямых, так как нет необходимости построения проекции одной из прямых на "экран"

Задача 5. Все та же "классическая" задача (с непересекающимися диагоналями двух смежных граней куба) перестает казаться сложной, как только находится "экран" - диагональное сечение куба.

Рисунок 14

Экран:

Рисунок 15

Рассмотрим плоскость A 1 B 1 CD. C 1 F (A 1 B 1 CD), т. к. C 1 FB 1 C и C 1 FA 1 B 1 . Тогда проекцией C 1 D на "экран" будет являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием между двумя непересекающимися диагоналями двух смежных граней. Находим EM из прямоугольного треугольника EDF. Ответ:.

Задача 6. В правильной треугольной пирамиде найти расстояние и угол между скрещивающимися прямыми: боковым ребром l и стороной основания a .

Рисунок 16

В данной и аналогичных ей задачах способ IV быстрее других способов приводит к решению, так как построив сечение, играющее роль "экрана", перпендикулярно AC (треугольник BDM), видно, что далее нет необходимости строить проекцию другой прямой (BM) на этот экран. DH - искомое расстояние. DH находим из треугольника MDB, используя формулы площади. Ответ: .

Пусть плоскость `alpha` параллельна плоскости `beta`, прямая `b` лежит в плоскости `beta`, точка `B` лежит на прямой `b`. Очевидно, что расстояние от точки `B` до плоскости `alpha` равно расстоянию от прямой `b` до плоскости `alpha` и равно расстоянию между плоскостями `alpha` и `beta`.

Рассмотрим две скрещивающиеся прямые `a` и `b`. Проведём через прямую `a` плоскость, параллельную прямой `b`. Через прямую `b` проведём плоскость, перпендикулярную плоскости `alpha`, пусть линия пересечения этих плоскостей `b_1` (эта прямая есть проекция прямой `b` на плоскость `alpha`). Точку пересечения прямых `a` и `b_1` обозначим `A`. Точка `A` является проекцией некоторой точки `B` прямой `b`. Из того, что `AB_|_alpha`, следует, что `AB_|_a` и `AB_|_b_1`; кроме того `b``||``b_1`, значит `AB_|_b` - . Прямая `AB` пересекает скрещивающиеся прямые `a` и `b` и перпендикулярна и той, и другой. Отрезок `AB` называется общим перпендикуляром двух скрещивающихся прямых.

Длина общего перпендикуляра скрещивающихся прямых равна расстоянию от любой точки прямой `b` до плоскости `alpha`.

* Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Пусть в пространстве задана прямая `l_1` с известным направляющим вектором `veca_1` (направляющим вектором прямой называется ненулевой вектор, параллельный этой прямой), прямая `l_2` с известным направляющим вектором `veca_2`, точки `A_1` и `A_2`, лежащие соответственно на `l_1` и `l_2`, кроме того, известен вектор `vec(A_1A_2)=vecr`. Пусть отрезок `P_1P_2` - общий перпендикуляр к `l_1` и `l_2` (см. рис. 9). Задача заключается в нахождении длины этого отрезка. Представим вектор `vec(P_1P_2)` в виде суммы `vec(P_1A_1)+vec(A_1A_2)+vec(A_2P_2)`. Затем, пользуясь коллинеарностью векторов `vec(P_1A_1)` и `veca_1`, `vec(A_2P_2)` и `veca_2`, получим для вектора `vec(P_1P_2)` представление `vec(P_1P_2)=xveca_1+yveca_2+vecr`, где `x` и `y` - неизвестные пока числа. Эти числа можно найти из условия перпендикулярности вектора `vec(P_1P_2)` векторам `veca_1` и `veca_2`, т. е. из следующей системы линейных уравнений:

x a → 1 + y a → 2 + r → · a → 1 = 0 , x a → 1 + y a → 2 + r → · a → 2 = 0 . \left\{\begin{array}{l}\left(x{\overrightarrow a}_1+y{\overrightarrow a}_2+\overrightarrow r\right)\cdot{\overrightarrow a}_1=0,\\\left(x{\overrightarrow a}_1+y{\overrightarrow a}_2+\overrightarrow r\right)\cdot{\overrightarrow a}_2=0.\end{array}\right.

После этого находим длину вектора `vec(P_1P_2):`

`P_1P_2=sqrt((xveca_1+yveca_2+vecr)^2)`.

Вычислить расстояние между скрещивающимися диагоналями двух соседних граней куба с ребром `a`.

Пусть дан куб `A...D_1` c ребром `a`. Найдём расстояние между прямыми `AD_1` и `DC_1` (рис. 10). Введём базис `veca=vec(DA)`, `vecb=vec(DC)`, `vecc=vec(DD_1)`. За направляющие векторы прямых `AD_1` и `DC_1` можно взять `vec(AD_1)=vecc-veca` и `vec(DC_1)=vecb+vecc`. Если `P_1P_2` - общий перпендикуляр к рассматриваемым прямым, то `vec(P_1P_2)=x(vecc-veca)+y(vecb+vecc)+veca`.

Составим систему уравнений для нахождения неизвестных чисел `x` и `y`:

x c → - a → + y b → + c → + a → · c → - a → = 0 , x c → - a → + y b → + c → + a → · b → + c → = 0 . \left\{\begin{array}{l}\left(x\left(\overrightarrow c-\overrightarrow a\right)+y\left(\overrightarrow b+\overrightarrow c\right)+\overrightarrow a\right)\cdot\left(\overrightarrow c-\overrightarrow a\right)=0,\\\left(x\left(\overrightarrow c-\overrightarrow a\right)+y\left(\overrightarrow b+\overrightarrow c\right)+\overrightarrow a\right)\cdot\left(\overrightarrow b+\overrightarrow c\right)=0.\end{array}\right.

Приведём эту систему к равносильной:

2 x + y - 1 = 0 , x + 2 y = 0 . \left\{\begin{array}{l}2x+y-1=0,\\x+2y=0.\end{array}\right.

Отсюда находим `x=2/3`, `y=-1/3`. Тогда

`vec(P_1P_2)=2/3(vecc-veca)-1/3(vecb+vecc)+veca=1/3veca-1/3vecb+1/3vecc`,

В данной статье на примере решения задачи C2 из ЕГЭ разобран способ нахождения с помощью метода координат. Напомним, что прямые являются скрещивающи-мися, если они не лежат в одной плоскости. В частности, если одна прямая лежит в плоскости, а вторая прямая пересекает эту плоскость в точке, которая не лежит на первой прямой, то такие прямые являются скрещивающимися (см. рисунок).

Для нахождения расстояния между скрещивающимися прямыми необходимо:

  1. Провести через одну из скрещивающихся прямых плоскость, которая параллельна другой скрещивающейся прямой.
  2. Опустить перпендикуляр из любой точки второй прямой на полученную плоскость. Длина этого перпендикуляра будет являться искомым расстоянием между прямыми.

Разберем данный алгоритм подробнее на примере решения задачи C2 из ЕГЭ по математике.

Расстояние между прямыми в пространстве

Задача. В единичном кубе ABCDA 1 B 1 C 1 D 1 найдите расстояние между прямыми BA 1 и DB 1 .

Рис. 1. Чертеж к задаче

Решение. Через середину диагонали куба DB 1 (точку O ) проведем прямую, параллельную прямой A 1 B . Точки пересечения данной прямой с ребрами BC и A 1 D 1 обозначаем соответственно N и M . Прямая MN лежит в плоскости MNB 1 и параллельна прямой A 1 B , которая в этой плоскости не лежит. Это означает, что прямая A 1 B параллельна плоскости MNB 1 по признаку параллельности прямой и плоскости (рис. 2).

Рис. 2. Искомое расстояние между скрещивающимися прямыми равно расстоянию от любой точки выделенной прямой до изображенной плоскости

Ищем теперь расстояние от какой-нибудь точки прямой A 1 B до плоскости MNB 1 . Это расстояние по определению будет являться искомым расстоянием между скрещивающимися прямыми.

Для нахождения этого расстояния воспользуемся методом координат. Введем прямоугольную декартову систему координат таким образом, чтобы ее начало совпало с точкой B, ось X была направлена вдоль ребра BA , ось Y — вдоль ребра BC , ось Z — вдоль ребра BB 1 (рис. 3).

Рис. 3. Прямоугольную декартову систему координат выберем так, как показано на рисунке

Находим уравнение плоскости MNB 1 в данной системе координат. Для этого определяем сперва координаты точек M , N и B 1: Полученные координаты подставляем в общее уравнение прямой и получаем следующую систему уравнений:

Из второго уравнения системы получаем из третьего получаем после чего из первого получаем Подставляем полученные значения в общее уравнение прямой:

Замечаем, что иначе плоскость MNB 1 проходила бы через начало координат. Делим обе части этого уравнения на и получаем:

Расстояние от точки до плоскости определяется по формуле.

Вам также будет интересно:

Клод шеннон краткая биография и интересные факты
Анатолий Ушаков, д. т. н, проф. каф. систем управления и информатики, университет «ИТМО»...
Воспаление придатков: причины, диагностика, лечение
Беспокоят тянущие или резкие боли внизу живота, нерегулярные месячные или их отсутствие,...
Болгарский красный сладкий перец: польза и вред
Сладкий (болгарский) перец – овощная культура, выращиваемая в средних и южных широтах. Овощ...
Тушеная капуста - калорийность
Белокочанная капуста - низкокалорийный овощ, и хотя в зависимости от способа тепловой...
Снежнянский городской методический кабинет
Отдел образования – это группа структурных подразделений: Аппарат: Начальник отдела...