Дети, мода, аксессуары. Уход за телом. Здоровье. Красота. Интерьер

Для чего нужны синонимы в жизни

Календарь Летоисчисление астрономия

Созвездие телец в астрономии, астрологии и легендах

Правила русской орфографии и пунктуации полный академический справочник Проп правила русской орфографии и пунктуации

Внеклассное мероприятие "Адыгея – родина моя!

Самые правдивые гадания на любовь

Луна таро значение в отношениях

Шницель из свинины на сковороде

Лихорадка Эбола — симптомы, лечение, история вируса

Ученым удалось измерить уровень радиации на марсе Максимальная интенсивность солнечного излучения на поверхности марса

Биография екатерины романовны дашковой Биография дашковой екатерины романовой

Сонник: к чему снится Собирать что-то

Cонник спасать, к чему снится спасать во сне видеть

Чудотворная молитва ангелу-хранителю о помощи

Со свинным рылом да в калашный ряд Минфин придумал для россиян «гарантированный пенсионный продукт»

Солнечная, земная и атмосферная радиация. Солнечная радиация и её влияние на организм человека и климат

Слепящий солнечный диск во все времена будоражил умы людей, служил благодатной темой для легенд и мифов. Ещё с древности люди догадывались о его воздействии на Землю. Как близки были наши далёкие предки к истине. Именно лучистой энергии Солнца мы обязаны существованием жизни на Земле.

Что же представляет собой радиоактивное излучение нашего светила и как оно воздействует на земные процессы?

Что такое солнечная радиация

Солнечная радиация - это совокупность солнечной материи и энергии, поступающей на Землю. Энергия распространяется в виде электромагнитных волн со скоростью 300 тысяч километров в секунду, проходит через атмосферу и достигает Земли за 8 минут. Диапазон волн, участвующих в этом «марафоне», весьма широк - от радиоволн до рентгеновских лучей, включая видимую часть спектра. Земная поверхность находится под воздействием как прямых, так и рассеянных земной атмосферой, солнечных лучей. Именно рассеянием в атмосфере сине-голубых лучей объясняется голубизна неба в ясный день. Жёлто-оранжевый цвет солнечного диска обусловлен тем, что соответствующие ему волны проходят почти без рассеивания.

С запозданием на 2–3 суток земли достигает «солнечный ветер», представляющий собой продолжение солнечной короны и состоящий из ядер атомов лёгких элементов (водорода и гелия), а также электронов. Вполне естественно, что солнечная радиация оказывает сильнейшее влияние на организм человека.

Влияние солнечной радиации на организм человека

Электромагнитный спектр солнечной радиации состоит из инфракрасной, видимой и ультрафиолетовой частей. Поскольку их кванты обладают различной энергией, то они оказывают разнообразное действие на человека.

освещение в помещении

Чрезвычайно велико и гигиеническое значение солнечной радиации. Поскольку видимый свет является решающим фактором в получении информации о внешнем мире, в помещении необходимо обеспечивать достаточный уровень освещённости. Его регламентирование производится согласно СНиП, которые для солнечной радиации составляются с учётом свето-климатических особенностей различных географических зон и учитываются при проектировании и строительстве различных объектов.

Даже поверхностный анализ электромагнитного спектра солнечного излучения доказывает, как велико влияние этого вида радиации на организм человека.

Распределение солнечного излучения по территории Земли

Далеко не всё излучение, идущее от Солнца, достигает поверхности земли. И причин для этого немало. Земля стойко отражает атаку тех лучей, которые губительны для её биосферы. Эту функцию выполняет озоновый щит нашей планеты, не пропуская наиболее агрессивную часть ультрафиолетового излучения. Атмосферный фильтр в виде водяного пара, углекислого газа, взвешенных в воздухе пылевых частиц - в значительной степени отражает, рассеивает и поглощает солнечное излучение.

Та его часть, которая преодолела все эти преграды, падает на поверхность земли под разными углами, зависящими от широты местности. Живительное солнечное тепло распределяется по территории нашей планеты неравномерно. По мере изменения высоты стояния солнца в течение года над горизонтом изменяется масса воздуха, через которую пролегает путь солнечных лучей. Все это оказывает влияние на распределение интенсивности солнечного излучения по территории планеты. Общая тенденция такова - этот параметр увеличивается от полюса к экватору, так как чем больше угол падения лучей, тем больше тепла попадает на единицу площади.

Карты солнечной радиации позволяют иметь картину распределения интенсивности солнечного излучения по территории Земли.

Влияние солнечной радиации на климат Земли

Решающее влияние на климат Земли оказывает инфракрасная составляющая солнечной радиации.

Понятно, что это происходит лишь в то время, когда Солнце находится над горизонтом. Это влияние зависит от удалённости нашей планеты от Солнца, которое изменяется в течение года. Орбита Земли представляет собой эллипс, внутри которого и находится Солнце. Совершая свой годичный путь вокруг Солнца, Земля то удаляется от своего светила, то приближается к нему.

Кроме изменения расстояния, количество поступающей на землю радиации, определяется наклоном земной оси к плоскости орбиты (66,5°) и вызываемой ею сменой времён года. Летом она больше, чем зимой. На экваторе этого фактора нет, но по мере роста широты места наблюдения, разрыв между летом и зимой становится значительным.

В процессах, происходящих на Солнце, имеют место всевозможные катаклизмы. Их воздействие отчасти нивелировано огромными расстояниями, защитными свойствами земной атмосферы и магнитным полем Земли.

Как защититься от солнечной радиации

Инфракрасная составляющая солнечного излучения - это вожделенное тепло, которого жители средних и северных широт с нетерпением ожидают все остальные сезоны года. Солнечной радиацией как оздоровительным фактором, пользуются как здоровые, так и больные.

Однако, нельзя забывать, что тепло так же, как и ультрафиолет, относится к очень сильным раздражителям. Злоупотребление их действием может привести к ожогу, общему перегреву организма, и даже к обострению хронических заболеваний. Принимая солнечные ванны, следует придерживаться проверенных жизнью правил. Особенно осторожно следует загорать в ясные солнечные дни. Грудным детям и пожилым людям, больным с хронической формой туберкулёза и проблемами с сердечно-сосудистой системой, следует довольствоваться рассеянным солнечным излучением в тени. Этого ультрафиолета, вполне достаточно для удовлетворения нужд организма.

Даже молодым людям, не имеющих особых проблем со здоровьем, следует предусмотреть защиту от солнечной радиации.

Сейчас появилось движение, активисты которого выступают против загара. И не напрасно. Загорелая кожа, несомненно, красива. Но меланин, вырабатываемый организмом (то что мы называем загаром) - это его защитная реакция на воздействие солнечного излучения. Пользы от загара нет! Есть даже сведения, что загар укорачивает жизнь, так как радиация имеет кумулятивное свойство - она накапливается в течении всей жизни.

Если дело обстоит так серьёзно, следует скрупулёзно соблюдать правила, предписывающие как защититься от солнечной радиации:

  • строго ограничивать время для загара и делать это лишь в безопасные часы;
  • находясь на активном солнце, следует носить широкополую шляпу, закрытую одежду, солнцезащитные очки и зонт;
  • использовать только качественный солнцезащитный крем.

Во все ли времена года солнечная радиация опасна для человека? Количество поступающего на землю солнечного излучения связано со сменой времён года. На средних широтах летом оно на 25% больше чем зимой. На экваторе этой разницы нет, но по мере роста широты места наблюдения - это различие возрастает. Это происходит из-за того, что наша планета по отношению к солнцу наклонена под углом в 23,3 градуса. Зимой оно находится низко над горизонтом и освещает землю лишь скользящими лучами, которые меньше прогревают освещаемую поверхность. Такое положение лучей вызывает их распределение по большей поверхности, что снижает их интенсивность по сравнению с летним отвесным падением. Кроме того, наличие острого угла при прохождении лучей через атмосферу, «удлиняет» их путь, заставляя терять большее количество тепла. Это обстоятельство снижает воздействие солнечной радиации зимой.

Солнце - звезда, являющаяся для нашей планеты источником тепла и света. Она «управляет» климатом, сменой времён года и состоянием всей биосферы Земли. И только знание законов этого могучего воздействия, позволит использовать этот живительный дар на благо здоровья людей.

Источники тепла. В жизни атмосферы решающее значение имеет тепловая энергия. Главнейшим источником этой энергии является Солнце. Что же касается теплового излучения Луны, планет и звезд, то оно для Земли настолько ничтожно, что практически его нельзя принимать во внимание. Значительно больше тепловой энергии дает внутреннее тепло Земли. По вычислениям геофизиков, постоянный приток тепла из недр Земли повышает температуру земной поверхности на 0°,1. Но подобный приток тепла все же настолько мал, что принимать его в расчет также нет никакой необходимости. Таким образом, единственным источником тепловой энергии на поверхности Земли можно считать только Солнце.

Солнечная радиация. Солнце, имеющее температуру фотосферы (излучающей поверхности) около 6000°, излучает энергию в пространство во всех направлениях. Часть этой энергии в виде огромного пучка параллельных солнечных лучей попадает на Землю. Солнечная энергия, дошедшая до поверхности Земли в виде прямых лучей Солнца, носит название прямой солнечной радиации. Но не вся солнечная радиация, направленная на Землю, доходит до земной поверхности, так как солнечные лучи, проходя через мощный слой атмосферы, частично поглощаются ею, частично рассеиваются молекулами и взвешенными частичками воздуха, некоторая часть отражается облаками. Та часть солнечной энергии, которая рассеивается в атмосфере, называется рассеянной радиацией. Рассеянная солнечная радиация распространяется в атмосфере и попадает к поверхности Земли. Нами этот вид радиации воспринимается как равномерный дневной свет, когда Солнце полностью закрыто облаками или только что скрылось за горизонтом.

Прямая и рассеянная солнечная радиация, достигнув поверхности Земли, не полностью поглощается ею. Часть солнечной радиации отражается от земной поверхности обратно в атмосферу и находится там в виде потока лучей, так называемой отраженной солнечной радиации.

Состав солнечной радиации весьма сложный, что связано с очень высокой температурой излучающей поверхности Солнца. Условно по длине волн спектр солнечной радиации делят на три части: ультрафиолетовую (η<0,4<μ видимую глазом (η от 0,4μ до 0,76μ) и инфракрасную часть (η >0,76μ). Кроме температуры солнечной фотосферы, на состав солнечной радиации у земной поверхности влияет еще поглощение и рассеивание части солнечных лучей при их прохождении через воздушную оболочку Земли. В связи с этим состав солнечной радиации на верхней границе атмосферы и у поверхности Земли будет неодинаков. На основании теоретических расчетов и наблюдений установлено, что на границе атмосферы на долю ультрафиолетовой радиации приходится 5%, на видимые лучи - 52% и на инфракрасные - 43%. У земной же поверхности (при высоте Солнца 40°) ультрафиолетовые лучи составляют только 1%, видимые - 40%, а инфракрасные - 59%.

Интенсивность солнечной радиации. Под интенсивностью прямой солнечной радиации понимают количество тепла в калориях, получаемого в 1 мин. от лучистой энергии Солнца поверхностью в 1 см 2 , расположенной перпендикулярно к солнечным лучам.

Для измерения интенсивности прямой солнечной радиации применяются специальные приборы - актинометры и пиргелиометры; величина рассеянной радиации определяется пиранометром. Автоматическая регистрация продолжительности действия солнечной радиации производится актинографами и гелиографами. Спектральная интенсивность солнечной радиации определяется спектроболографом.

На границе атмосферы, где исключено поглощающее и рассеивающее воздействие воздушной оболочки Земли, интенсивность прямой солнечной радиации равна приблизительно 2 кал на 1 см 2 поверхности в 1 мин. Эта величина носит название солнечной постоянной. Интенсивность солнечной радиации в 2 кал на 1 см 2 в 1 мин. дает такое большое количество тепла в течение года, что его хватило бы, чтобы расплавить слой льда в 35 м толщиной, если бы такой слой покрывал всю земную поверхность.

Многочисленные измерения интенсивности солнечной радиации дают основание полагать, что количество солнечной энергии, приходящее к верхней границе атмосферы Земли, испытывает колебания в размере нескольких процентов. Колебания бывают периодические и непериодические, связанные, по-видимому, с процессами, происходящими на самом Солнце.

Кроме того, некоторое изменение в интенсивности солнечной радиации происходит в течение года благодаря тому, что Земля в годовом своем вращении движется не по окружности, а по эллипсу, в одном из фокусов которого находится Солнце. В связи с этим меняется расстояние от Земли до Солнца и, следовательно, происходит колебание интенсивности солнечной радиации. Наибольшая интенсивность наблюдается около 3 января, когда Земля находится ближе всего от Солнца, а наименьшая около 5 июля, когда Земля удалена от Солнца на максимальное расстояние.

Колебание интенсивности солнечной радиации по этой причине очень невелико и может представлять только теоретический интерес. (Количество энергии при максимальном расстоянии относится к количеству энергии при минимальном расстоянии, как 100: 107, т. е. разница совершенно ничтожна.)

Условия облучения поверхности земного шара. Уже одна только шарообразная форма Земли приводит к тому, что лучистая энергия Солнца распределяется на земной поверхности весьма неравномерно. Так, в дни весеннего и осеннего равноденствия (21 марта и 23 сентября) только на экваторе в полдень угол падения лучей будет 90° (рис. 30), а по мере приближения к полюсам он будет уменьшаться от 90 до 0°. Таким образом,

если на экваторе количество полученной радиации принять за 1, то на 60-й параллели она выразится в 0,5, а на полюсе будет равна 0.

Земной шар, кроме того, имеет суточное и годовое движение, причем земная ось наклонена к плоскости орбиты на 66°,5. В силу этого наклона между плоскостью экватора и плоскостью орбиты образуется угол в 23°30 г. Это обстоятельство приводит к тому, что углы падения солнечных лучей для одних и тех же широт будут меняться в пределах 47° (23,5+23,5).

В зависимости от времени года меняется не только угол падения лучей, но также продолжительность освещения. Если в тропических странах во все времена года продолжительность дня и ночи приблизительно одинакова, то в полярных странах, наоборот, она очень различна. Так, например, на 70° с. ш. летом Солнце не заходит 65 суток, на 80° с. ш.- 134, а на полюсе -186. В силу этого на Северном полюсе радиация в день летнего солнцестояния (22 июня) на 36% больше, чем на экваторе. Что же касается всего летнего полугодия, то общее количество тепла и света, получаемого полюсом, только на 17% меньше, чем на экваторе. Таким образом, в летнее время в полярных странах продолжительность освещения в значительной мере компенсирует тот недостаток радиации, который является следствием малого угла падения лучей. В зимнее полугодие картина совершенно другая: количество радиации на том же Северном полюсе будет равно 0. В результате за год среднее количество радиации на полюсе оказывается в 2,4 меньше, чем на экваторе. Из всего сказанного следует, что количество солнечной энергии, которое получает Земля путем радиации, определяется углом падения лучей и продолжительностью облучения.

Земная поверхность при отсутствии атмосферы на различных широтах за сутки получала бы следующее количество тепла, выраженное в калориях на 1 см 2 (см. таблицу на стр. 92).

Приведенное в таблице распределение радиации по земной поверхности принято называть солярным климатом. Повторяем, что такое распределение радиации мы имеем только у верхней границы атмосферы.


Ослабление солнечной радиации в атмосфере. До сих пор мы говорили об условиях распределения солнечного тепла по земной поверхности, не принимая во внимание атмосферы. Между тем атмосфера в данном случае имеет огромное значение. Солнечная радиация, проходя через атмосферу, испытывает рассеивание и, кроме того, поглощение. Оба эти процесса вместе ослабляют солнечную радиацию в значительной степени.

Солнечные лучи, проходя через атмосферу, прежде всего испытывают рассеивание (диффузию). Рассеивание создается тем, что лучи света, преломляясь и отражаясь от молекул воздуха и частичек твердых и жидких тел, находящихся в воздухе, отклоняются от прямого пути к действительно «рассеиваются».

Рассеивание сильно ослабляет солнечную радиацию. При увеличений количества водяных паров и особенно пылевых частиц рассеивание увеличивается и радиация ослабляется. В больших городах и пустынных областях, где запыленность воздуха наибольшая, рассеивание ослабляет силу радиации на 30-45%. Благодаря рассеиванию получается тот дневной свет, который освещает предметы, если даже на них непосредственно солнечные лучи не падают. Рассеивание обусловливает и самый цвет неба.

Остановимся теперь на способности атмосферы поглощать лучистую энергию Солнца. Основные газы, входящие в состав атмосферы, поглощают лучистую энергию сравнительно очень мало. Примеси же (водяной пар, озон, углекислый газ и пыль), наоборот, отличаются большой поглотительной способностью.

В тропосфере наиболее значительную примесь составляют водяные пары. Они особенно сильно поглощают инфракрасные (длинноволновые), т. е. преимущественно тепловые лучи. И чем больше водяных паров в атмосфере, тем естественно больше и. поглощение. Количество же водяных паров в атмосфере подвержено большим изменениям. В естественных условиях оно меняется от 0,01 до 4% (по объему).

Очень большой поглотительной способностью отличается озон. Значительная примесь озона, как уже говорилось, находится в нижних слоях стратосферы (над тропопаузой). Озон поглощает ультрафиолетовые (коротковолновые) лучи почти полностью.

Большой поглотительной способностью отличается также и углекислый газ. Он поглощает главным образом длинноволновые, т. е. преимущественно тепловые лучи.

Пыль, находящаяся в воздухе, также поглощает некоторое количество солнечной радиации. Нагреваясь под действием солнечных лучей, она может заметно повысить температуру воздуха.

Из общего количества солнечной энергии, приходящей к Земле, атмосфера поглощает всего около 15%.

Ослабление солнечной радиации путем рассеивания и поглощения атмосферой для различных широт Земли очень различно. Это различие зависит прежде всего от угла падения лучей. При зенитном положении Солнца лучи, падая вертикально, пересекают атмосферу кратчайшим путем. С уменьшением угла падения путь лучей удлиняется и ослабление солнечной радиации становится более значительным. Последнее хорошо видно по чертежу (рис. 31) и приложенной таблице (в таблице величина пути солнечного луча при зенитном положении Солнца принята за единицу).


В зависимости от угла падения лучей изменяется не только количество лучей, но также и их качество. В период, когда Солнце находится в зените (над головой), на ультрафиолетовые лучи приходится 4%, на

видимые - 44% и инфракрасные - 52%. При положении Солнца у горизонта ультрафиолетовых лучей совсем нет, видимых 28% и инфракрасных 72%.

Сложность влияния атмосферы на солнечную радиацию усугубляется еще тем, что пропускная ее способность очень сильно меняется в зависимости от времени года и состояния погоды. Так, если бы небо все время оставалось безоблачным, то годовой ход притока солнечной радиации на различных широтах можно было бы графически выразить следующим образом (рис. ,32) Из чертежа ясно видно, что при безоблачном небе в Москве в мае, июне и июле тепла от солнечной радиации получалось бы больше, чем на экваторе. Точно так же во вторую половину мая, в июне и первой половине июля на Северном полюсе тепла получалось бы больше, чем на экваторе и в Москве. Повторяем, что так было бы при безоблачном небе. Но на самом деле этого не получается, потому что облачность в значительной мере ослабляет солнечную радиацию. Приведем пример, изображенный на графике (рис. 33). На графике видно, как много солнечной радиации не доходит до поверхности Земли: значительная часть ее задерживается атмосферой и облаками.

Однако нужно сказать, что тепло, поглощенное облаками, частью идет на нагревание атмосферы, а частью косвенным образом достигает и земной поверхности.

Суточный и годовой ход интенсивности сол нечной радиации. Интенсивность прямой солнечной радиации у поверхности Земли зависит от высоты Солнца над горизонтом и от состояния атмосферы (от ее запыленности). Если бы. прозрачность атмосферы в течение суток была постоянная, то максимальная интенсивность солнечной радиации наблюдалась бы в полдень, а минимальная - при восходе и заходе Солнца. В этом случае график хода суточной интенсивности солнечной радиации был бы симметричным относительно полдня.

Содержание пыли, водяного пара и других примесей в атмосфере непрерывно меняется. В связи с этим меняется прозрачность воздуха и нарушается симметричность графика хода интенсивности солнечной радиации. Нередко, особенно в летний период, в полуденное время, когда происходит усиленное нагревание земной поверхности, возникают мощные восходящие токи воздуха, увеличивается количество водяного пара и пыли в атмосфере. Это приводит к значительному ослаблению солнечной радиации в полдень; максимум интенсивности радиации в этом случае наблюдается в дополуденные или послеполуденные часы. Годовой ход интенсивности солнечной радиации также связан с изменениями высоты Солнца над горизонтом в течение года и с состоянием прозрачности атмосферы в различные сезоны. В странах северного полушария наибольшая высота Солнца над горизонтом бывает в июне месяце. Но в это же время наблюдается и наибольшая запыленность атмосферы. Поэтому максимальная интенсивность обычно приходится не на середину лета, а на весенние месяцы, когда Солнце довольно высоко* поднимается над горизонтом, а атмосфера после зимы остается еще сравнительно чистой. Для иллюстрации годового хода интенсивности солнечной радиации в северном полушарии приводим данные среднемесячных полуденных величин интенсивности радиации в Павловске.


Сумма тепла солнечной радиации. Поверхность Земли в течение дня непрерывно получает тепло от прямой и рассеянной солнечной радиации или только от рассеянной радиации (при пасмурной погоде). Определяют суточную величину тепла на основании актинометрических наблюдений: по учету количества прямой и рассеянной радиации, поступившей на земную поверхность. Определив сумму тепла за каждые сутки, вычисляют и количество тепла, получаемого земной поверхностью за месяц или за год.

Суточное количество тепла, получаемого земной поверхностью от солнечной радиации, зависит от интенсивности радиации и от продолжительности ее действия в течение суток. В связи с этим минимум притока тепла приходится на зиму, а максимум на лето. В географическом распределении суммарной радиации по земному шару наблюдается ее увеличение с уменьшением широты местности. Это положение подтверждается следующей таблицей.


Роль прямой и рассеянной радиации в годовом количестве тепла, получаемом земной поверхностью на разных широтах земного шара, неодинакова. В высоких широтах в годовой сумме тепла преобладает рассеянная радиация. С уменьшением широты преобладающее значение переходит к прямой солнечной радиации. Так, например, в бухте Тихой рассеянная солнечная радиация дает 70% годовой суммы тепла, а прямая радиация только 30%. В Ташкенте, наоборот, прямая солнечная радиация дает 70%, рассеянная только 30%.

Отражательная способность Земли. Альбедо. Как уже указывалось, поверхность Земли поглощает только часть солнечной энергии, поступающей к ней в виде прямой и рассеянной радиации. Другая часть отражается в атмосферу. Отношение величины солнечной радиации, отраженной данной поверхностью, к величине потока лучистой энергии, падающей на эту поверхность, называется альбедо. Альбедо выражается в процентах и характеризует отражательную способность данного участка поверхности.

Альбедо зависит от характера поверхности (свойства почвы, наличия снега, растительности, воды и т. д.) и от величины угла падения лучей Солнца на поверхность Земли. Так, например, если лучи падают на земную поверхность под углом в 45°, то:

Из приведенных примеров видно, что отражающая способность у различных предметов неодинакова. Она всего больше у снега и меньше всего у воды. Однако взятые нами примеры относятся лишь к тем случаям, когда высота Солнца над горизонтом равна 45°. При уменьшении же этого угла отражающая способность увеличивается. Так, например, пои высоте Солнца в 90° вода отражает только 2%, при 50° - 4%, при 20°-12%, при 5° - 35-70% (в зависимости от состояния водной поверхности).

В среднем при безоблачном небе поверхность земного шара отражает 8% солнечной радиации. Кроме того, 9% отражает атмосфера. Таким образом, земной шар в целом при безоблачном небе отражает 17% падающей на него лучистой энергии Солнца. Если же небо покрыто облаками, то от них отражается 78% радиации. Если взять естественные условия, исходя из того соотношения между безоблачным небом и небом, покрытым облаками, которое наблюдается в действительности, то отражательная способность Земли в целом равна 43%.

Земная и атмосферная радиация. Земля, получая солнечную энергию, нагревается и сама становится источником излучения тепла в мировое пространство. Однако лучи, испускаемые земной поверхностью, резко отличаются от солнечных лучей. Земля излучает лишь длинноволновые (λ 8-14 μ) невидимые инфракрасные (тепловые) лучи. Энергия, излучаемая земной поверхностью, называется земной радиацией. Излучение Земли происходит и. днем и ночью. Интенсивность излучения тем больше, чем выше температура излучающего тела. Земное излучение определяется в тех же единицах, что и солнечное, т. е. в калориях с 1 см 2 поверхности в 1 мин. Наблюдения показали, что величина земного излучения невелика. Обычно она достигает 15-18 сотых калории. Но, действуя непрерывно, она может дать значительный тепловой эффект.

Наиболее сильное земное излучение получается при безоблачном небе и хорошей прозрачности атмосферы. Облачность (особенно низкие облака) значительно уменьшает земное излучение и часто доводит его до нуля. Здесь можно сказать, что атмосфера вместе с облаками является хорошим «одеялом», предохраняющим Землю от чрезмерного остывания. Части атмосферы подобно участкам земной поверхности излучают энергию в соответствии с их температурой. Эта энергия носит название атмосферной радиации. Интенсивность атмосферной радиации зависит от температуры излучающего участка атмосферы, а также от количества водяных паров и углекислого газа, содержащихся в воздухе. Атмосферная радиация относится к труппе длинноволновой. Распространяется она в атмосфере во всех направлениях; некоторое количество ее достигает земной поверхности и поглощается ею, другая часть уходит в межпланетное пространство.

О приходе и расходе энергии Солнца на Земле. Земная поверхность, с одной стороны, получает солнечную энергию в виде прямой и рассеянной радиации, а с другой стороны, теряет часть этой энергии в виде земной радиации. В результате прихода и расхода солнечной" энергии получается какой-то результат. В одних случаях этот результат может быть положительным, в других отрицательным. Приведем примеры того и другого.

8 января. День безоблачный. На 1 см 2 земной поверхности поступило за сутки 20 кал прямой солнечной радиации и 12 кал рассеянной радиации; всего, таким образом, получено 32 кал. За это же время в силу излучения 1 см? земной поверхности потерял 202 кал. В результате, выражаясь языком бухгалтерии, в балансе имеется потеря 170 кал (отрицательный баланс).

6 июля. Небо почти безоблачно. От прямой солнечной радиации получено 630 кал, от рассеянной радиации 46 кал. Всего, следовательно, земная поверхность получила на 1 см 2 676 кал. Путем земного излучения потеряно 173 кал. В балансе прибыль на 503 кал (баланс положительный).

Из приведенных примеров, помимо всего прочего, совершенно ясно, почему в умеренных широтах зимой холодно, а летом тепло.

Использование солнечной радиации для технических и бытовых целей. Солнечная радиация является неисчерпаемым природным источником энергии. О величине солнечной энергии на Земле можно судить по такому примеру: если, например, использовать тепло солнечной радиации, падающей только на 1/10 часть площади СССР, то можно получить энергию, равную работе 30 тыс. Днепрогэсов.

Люди издавна стремились использовать даровую энергию солнечной радиации для своих нужд. К настоящему времени создано много различных гелиотехнических установок, работающих на использовании солнечной радиации и получивших большое применение в промышленности и для удовлетворения бытовых нужд населения. В южных районах СССР в промышленности и в коммунальном хозяйстве на основе широкого использования солнечной радиации работают солнечные водонагреватели, кипятильники, опреснители соленой воды, гелиосушилки (для сушки фруктов), кухни, бани, теплицы, аппараты для лечебных целей. Широко используется солнечная радиация на курортах для лечения и укрепления здоровья людей.

Говоря о влиянии солнца на человеческий организм, невозможно точно определить вред или пользу оно приносит. Солнечные лучи – это как килокалории, получаемые из пищи . Их недостаток приводит к истощению, а в избыточном количестве они вызывают ожирение. Так и в данной ситуации. В умеренном количестве солнечное излучение благоприятно воздействует на организм, в то время как избыток ультрафиолета провоцирует появление ожогов и развитие многочисленных заболеваний. Давайте разберемся подробнее.

Солнечное излучение: общее воздействие на организм

Солнечное излучение – это совокупность ультрафиолетовых и инфракрасных волн . Каждая из этих составных частей по-своему воздействует на организм.

Влияние инфракрасного излучения:

  1. Главная особенность инфракрасных лучей – создаваемый ими тепловой эффект. Прогревание тела способствует расширению кровеносных сосудов и нормализации кровообращения.
  2. Прогревание оказывает расслабляющее действие на мышцы, оказывая легкий противовоспалительный и болеутоляющий эффект.
  3. Под воздействием тепла повышается метаболизм, нормализуются процессы усвоения биологически активных компонентов.
  4. Инфракрасное излучение солнца стимулирует работу головного мозга и зрительного аппарата.
  5. Благодаря солнечной радиации происходит синхронизация биологических ритмов организма, запускаются режимы сна и бодрствования .
  6. Лечение солнечным теплом улучшает состояние кожи, избавляя от угревых высыпаний.
  7. Теплый свет поднимает настроение и улучшает эмоциональный фон человека.
  8. А по последним исследованиям еще и улучшает качество спермы у мужчин.

Несмотря на все прения по поводу негативного влияния ультрафиолетового излучения на организм, его нехватка может привести к серьезным проблемам со здоровьем. Это один из жизненно важных факторов существования. И в условиях дефицита ультрафиолета в организме начинают происходить такие изменения:

  1. В первую очередь ослабевает иммунитет. Это вызвано нарушением усвояемости витаминов и минералов, сбоем в обмене веществ на клеточном уровне.
  2. Появляется склонность к развитию новых или обострению хронических заболеваний, чаще всего протекающих с осложнениями.
  3. Отмечается вялость, синдром хронической усталости, снижается уровень работоспособности.
  4. Нехватка ультрафиолет для детей мешает выработке витамина D и провоцирует снижение темпов роста.

Однако нужно понимать, что чрезмерная солнечная активность не пойдет на благо организму!

Противопоказания к солнечным ваннам

Несмотря на всю пользу солнечного света для организма, не все могу себе позволить наслаждаться теплыми лучами. К противопоказаниям относятся:

  • острые воспалительные процессы;
  • опухоли, независимо от места их локализации ;
  • прогрессирующий туберкулез;
  • стенокардия, ишемическая болезнь;
  • эндокринные патологии;
  • поражение нервной системы;
  • нарушение функций щитовидки и надпочечников;
  • сахарный диабет;
  • мастопатия;
  • миома матки;
  • беременность;
  • восстановительный период после оперативного вмешательства.

Во всех случаях активное излучение будет усугублять течение болезни, провоцируя развитие новых осложнений .

Не стоит увлекаться солнцем и пожилым людям, грудным деткам. Для этих категорий населения показано лечение солнечным светом в тени. Необходимой дозы безопасного тепла там будет достаточно.

Истории наших читателей

Владимир
61 год

Чищу сосуды стабильно каждый год. Начал этим заниматься когда мне стукнуло 30, т. к. давление было ни к черту. Врачи руками только разводили. Пришлось самому браться за свое здоровье. Разные способы испробовал, но один мне помогает особенно хорошо...
Подбронее >>>

Негативное влияние солнца

Время воздействия инфракрасных и ультрафиолетовых волн должно быть строго ограничено. В избыточном количестве солнечное излучение:

  • может спровоцировать ухудшение общего состояния организма (так называемый тепловой удар вследствие перегревания);
  • отрицательно влияет на кожу, становясь причиной развития стойких изменений ;
  • ухудшает зрение;
  • провоцирует гормональные сбои в организме;
  • могут спровоцировать развитие аллергических реакций.

Так что часовые лежания на пляже в периоды максимальной солнечной активности наносят огромный урон организму .

Для получения необходимой порции света достаточно двадцатиминутной прогулки в солнечный день.

Влияние солнца на кожу

Избыточное количество солнечной радиации приводит к серьезным проблемам с кожей. В краткосрочной перспективе вы рискуете заработать ожог или дерматит. Это самая малая проблема, с которой вы можете столкнуться, увлекшись загаром в жаркий день. Если подобная ситуация повторяется с завидной регулярностью, излучение солнца станет толчком к формированию злокачественных образований на коже, меланом .

Помимо этого, воздействие ультрафиолета иссушает кожу, делая ее более тонкой и чувствительной. А постоянное пребывание под прямыми лучами ускоряет процесс старения, провоцируя появление ранних морщин.

Дабы обезопасить себя от негативного влияния солнечной радиации, достаточно соблюдать простые меры безопасности:

  1. В летнее время года обязательно используйте солнцезащитный крем ? Нанося его на все открытые участки тела, включая лицо, руки, ноги и зону декольте. Значок SPF на упаковке – это и есть та самая защита от ультрафиолета. И степень ее будет зависеть от цифры, указанной возле аббревиатуры. Для похода в магазин подойдет косметика с уровнем SPF 15 или SPF 20. Если планируете провести время на пляже, используйте специальные средства с более высокими показателями. Для детской кожи подходит крем с максимальной защитой SPF 50.
  2. При необходимости длительного пребывания на улице при максимальной интенсивности солнечного излучения надевайте одежду из легких тканей с длинным рукавом. Обязательно носите шляпу с широкими полями, чтобы скрыть нежную кожу лица.
  3. Контролируйте продолжительность солнечных ванн. Рекомендуемое время – 15-20 минут. В случае более продолжительного пребывания на улице, постарайтесь укрыться от прямых солнечных лучей в тени деревьев.

И помните, что в летнее время года солнечное излучение воздействует на кожу в любое время суток, за исключением ночных часов. Вы можете не ощущать явного тепла от инфракрасных волн, но вот ультрафиолет сохраняет высокий уровень активности, как утром, так и после полудня.

Негативное влияние на зрение

Влияние солнечного света на зрительный аппарат огромно. Ведь благодаря световым лучам мы получаем информацию об окружающем нас мире. Искусственное освещение в какой-то мере может стать альтернативой естественному свету, но в условиях чтения и письма при лампе увеличивается нагрузка на глаза.

Говоря о негативном влиянии на человека и зрение солнечного света, подразумевается повреждение глаз при длительном пребывании на солнце без солнцезащитных очков.

Из неприятных ощущений, с которыми вы можете столкнуться, можно выделить режущие боли в глазах, их покраснение, светобоязнь. Наиболее серьезное поражение – ожог сетчатки . Также возможна сухость кожи век, формирование мелких морщинок.

  1. Носите солнцезащитные очки . Во время покупки в первую очередь обращайте внимание на степень защиты. Имиджевые модели зачастую слегка затеняют свет, но не препятствуют проникновению ультрафиолета. Поэтому рекомендуется отложить яркую оправу и сделать выбор в пользу качественных линз.
  2. Следите, чтобы на лицо не попадало прямых лучей. Находитесь в тени, носите шляпу, кепку или другой головной убор с козырьком.
  3. Не смотрите на солнце. Если вы не испытываете дискомфорта, это не говорит о безопасности данной затеи. Даже у зимнего солнца достаточно активности, чтобы обеспечить проблемы со зрением.

Существует ли безопасное время года

Использование солнечной радиации в качестве оздоровительной процедуры – распространенная практика. Что ультрафиолет, что тепло относится к разряду сильных раздражителей . И злоупотребление этими благами можно заработать серьезные проблемы.

Загар – это выработка меланина. А если быть точнее, то защитная реакция кожи на раздражитель.

А так ли опасно излучение солнца в любое время года? На этот вопрос сложно дать однозначный ответ. Все будет зависеть не столько от поры года, сколько от географического положения. Так, в средних широтах активность солнечной радиации повышается на 25-35% именно в летнее время. Поэтому и рекомендации относительно пребывания на улице в ясный день касаются только жаркой поры. Зимой жителям этих регионов ультрафиолет не угрожает.

А вот жители экватора с прямыми солнечными лучами сталкиваются круглый год. Поэтому вероятность негативного воздействия на организм присутствует как летом, так и зимой. Обитателям северных широт в этом плане повезло больше. Ведь при удаленности от экватора меняется угол падения солнечных лучей на землю, а вместе с ним и активность излучения . Длина тепловой волны увеличивается, и одновременно с этим уменьшается количество тепла (энергетические потери). Отсюда и зима круглый год, так как поверхности земли не хватает тепла для прогревания.

Солнечное излучение – друг нашего организма. Но не стоит злоупотреблять этой дружбой. Иначе последствия могут быть самыми серьезными. Просто наслаждайтесь теплом, не забывая о мерах предосторожности.

Солнце - источник света и тепла, в котором нуждается все живое на Земле. Но помимо фотонов света, оно излучает жесткую ионизирующую радиацию, состоящую из ядер и протонов гелия. Почему так происходит?

Причины возникновения солнечного излучения

Солнечная радиация образуется в дневные часы во время хромосферных вспышек - гигантских взрывов, происходящих в атмосфере Солнца. Часть солнечного вещества выбрасывается в космическое пространство, образуя космические лучи, главным образом состоящие из протонов и небольшого количеств ядер гелия. Эти заряженные частицы спустя 15-20 минут после того, как солнечная вспышка становится видимой, достигают поверхности земли.

Воздух отсекает первичное космическое излучение, порождая каскадный ядерный ливень, который затухает с понижением высоты. При этом рождаются новые частицы - пионы, которые распадаются и превращаются в мюоны. Они проникают в нижние слои атмосферы и попадают на землю, зарываясь вглубь до 1500 метров. Именно мюоны отвечают за образование вторичного космического излучения и естественной радиации, воздействующей на человека.

Спектр солнечного излучения

Спектр солнечного излучения включает как коротковолновые, так длинноволновые области:

  • гамма-лучи;
  • рентгеновское излучение;
  • УФ-радиацию;
  • видимый свет;
  • инфракрасную радиацию.

Свыше 95% излучения Солнца приходится на область «оптического окна» - видимого участка спектра с прилегающими областями ультрафиолетовых и инфракрасных волн. По мере прохождения через слои атмосферы действие солнечных лучей ослабляется - вся ионизирующая радиация, рентгеновские лучи и почти 98% ультрафиолета задерживаются земной атмосферой. Практически без потерь до земли доходит видимый свет и инфракрасное излучение, хотя и они частично поглощаются молекулами газов и частицами пыли, находящимися в воздухе.

В связи с этим, солнечное излучение не приводит к заметному повышению радиоактивного излучения на поверхности Земли. Вклад Солнца вместе с космическими лучами в формирование общей годовой дозы облучения составляет всего 0,3 мЗв/год. Но это усредненное значение, на самом деле уровень падающего на землю излучения различен и зависит от географического положения местности.

Где солнечное ионизирующее облучение сильнее?

Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего - на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой - на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода. При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения - долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

Солнечные вспышки - высокая радиационная опасность

Вспышки на Солнце - большая опасность для человека и всего живого на Земле, поскольку плотность потока солнечного излучения может превышать обычный уровень космического излучения в тысячу раз. Так, выдающийся советский ученый А. Л. Чижевский связал периоды образования солнечных пятен с эпидемиями тифа (1883-1917 г) и холеры (1823-1923 г) в России. На основании сделанных графиков он еще в 1930 году предсказал возникновение обширной пандемии холеры в 1960-1962 годах, которая и началась в Индонезии в 1961 году, затем быстро распространилась на другие страны Азии, Африки и Европы.

Сегодня получено множество данных, свидетельствующих о связи одиннадцатилетних циклов солнечной активности со вспышками заболеваний, а также с массовыми миграциями и сезонами бурного размножения насекомых, млекопитающих и вирусов. Гематологи установили увеличение количество инфарктов и инсультов в периоды максимальной солнечной активности. Такая статистика связана с тем, что в это время у людей повышается свертываемость крови, а так как у больных с заболеваниями сердца компенсаторная деятельность угнетена, возникают сбои в его работе вплоть до некрозов сердечной ткани и кровоизлияний в мозг.

Большие солнечные вспышки происходят не так часто - раз в 4 года. В это время увеличивается количество и размер пятен, в солнечной короне образуются мощные коронарные лучи, состоящие из протонов и небольшого количества альфа-частиц. Самый мощный их поток астрологи зарегистрировали в 1956 году, когда плотность космического излучения на поверхности земли увеличилась в 4 раза. Еще одним последствием подобной солнечной активности стало полярное сияние, зафиксированное в Москве и Подмосковье в 2000 году.

Как себя обезопасить?

Конечно, повышенный радиационный фон в горах - не повод отказываться от поездок в горы. Правда, стоит подумать о мерах безопасности и отправиться в путешествие вместе с портативным радиометром, который поможет контролировать уровень радиации и при необходимости ограничить время пребывания в опасных районах. В местности, где показании счетчика показывают величину ионизирующего облучения в 7 мкЗв/ч, не стоит находиться больше одного месяца.

ЛЕКЦИЯ 2.

СОЛНЕЧНАЯ РАДИАЦИЯ.

План:

1.Значение солнечной радиации для жизни на Земле.

2. Виды солнечной радиации.

3. Спектральный состав солнечной радиации.

4. Поглощение и рассеивание радиации.

5.ФАР (фотосинтетически активная радиация).

6. Радиационный баланс.

1. Основным источником энергии на Земле для всего живого (растений, животных и человека) является энергия солнца.

Солнце представляет собой газовый шар радиусом 695300км. Радиус Солнца в 109 раз больше радиуса Земли (экваториальный 6378,2км, полярный 6356,8км). Солнце состоит в основном из водорода (64%) и гелия (32%). На долю остальных приходится всего 4% его массы.

Солнечная энергия является основным условием существова­ния биосферы и одним из главных климатообразующих факто­ров. За счет энергии Солнца воздушные массы в атмосфере не­прерывно перемещаются, что обеспечивает постоянство газово­го состава атмосферы. Под действием солнечной радиации ис­паряется огромное количество воды с поверхности водоемов , почвы, растений. Водяной пар, переносимый ветром с океанов и морей на материки, является основным источником осадков для суши.

Солнечная энергия - непременное условие существования зеленых растений, превращающих в процессе фотосинтеза сол­нечную энергию в высокоэнергетические органические веще­ства.

Рост и развитие растений представляют собой процесс усвоения и переработки солнечной энергии, поэтому сельскохозяйственное производство возможно только при условии поступления солнечной энергии на поверхность Земли. Русский ученый писал: « Дайте самому лучшему повару сколько угодно свежего воздуха, солнечного света, целую речку чистой воды, попросите, чтобы из всего этого он приготовил вам сахар, крахмал, жиры и зерно, и он решит, что вы над ним смеетесь. Но то, что кажется совершенно фантастическим человеку, беспрепятственно совершается в зеленых листьях растений под действием энергии Солнца». Подсчитано, что 1 кв. метр листьев за час продуцирует грамм сахара. В связи с тем, что Земля окружена сплошной оболочкой атмосферы, солнечные лучи, прежде чем достичь поверхности земли, проходят всю толщу атмосферы, которая частично отражает их, частично рассеивает, т. е. изменяет количество и качество солнечного света, поступающего на поверхность земли. Живые организмы чутко реагируют на изменение интенсивности освещенности, создаваемой сол­нечным излучением. Вследствие различной реакции на интен­сивность освещенности все формы растительности делят на све­толюбивые и теневыносливые. Недостаточная освещенность в посевах обусловливает, например, слабую дифференциацию тканей соломины зерновых культур. В результате уменьшаются крепость и эластичность тканей, что часто приводит к полега­нию посевов. В загущенных посевах кукурузы из-за слабой осве­щенности солнечной радиацией ослабляется образование почат­ков на растениях.

Солнечная радиация влияет на химический состав сельскохо­зяйственной продукции. Например, сахаристость свеклы и пло­дов, содержание белка в зерне пшеницы непосредственно зави­сят от числа солнечных дней. Количество масла в семенах под­солнечника, льна также возрастает с увеличением прихода сол­нечной радиации.

Освещенность надземной части растений существенно влия­ет на поглощение корнями питательных веществ. При слабой освещенности замедляется перевод ассимилятов в корни, и в результате тормозятся биосинтетические процессы, происходящие в клетках растений.

Освещенность влияет и на появление, распространение и развитие болезней растений. Период заражения состоит из двух фаз, различающихся между собой по реакции на световой фак­тор. Первая из них - собственно прорастание спор и проникно­вение заразного начала в ткани поражаемой культуры - в боль­шинстве случаев не зависит от наличия и интенсивности света. Вторая - после прорастания спор - наиболее активно проходит при повышенной освещенности.

Положительное действие света сказывается также на скорос­ти развития патогена в растении-хозяине. Особенно четко это проявляется у ржавчинных грибов. Чем больше света, тем коро­че инкубационный период у линейной ржавчины пшеницы, желтой ржавчины ячменя, ржавчины льна и фасоли и т. д. А это увеличивает число генераций гриба и повышает интенсивность поражения. В условиях интенсивного освещения у этого патоге­на возрастает плодовитость

Некоторые заболевания наиболее активно развиваются при недостаточном освещении, вызывающем ослабление растений и снижение их устойчивости к болезням (возбудителям разного рода гнилей, особенно овощных культур).

Продолжительность осве­щения и растения. Ритм сол­нечной радиации (чередова­ние светлой и темной части суток) является наиболее устойчивым и повторяющимся из года в год фактором внешней среды. В результате многолетних исследований физиологами ус­тановлена зависимость перехода растений к генеративному раз­витию от определенного соотношения длины дня и ночи. В свя­зи с этим культуры по фотопериодической реакции можно клас­сифицировать по группам: короткого дня, развитие которых задерживается при продол­жительности дня больше 10ч. Короткий день способствует закладке цветков, а длинный день препятствует этому. К таким культурам относятся соя, рис, просо, сорго, кукуруза и др.;

длинного дня до 12-13час., требующие для своего развития продолжитель­ного освещения. Их развитие ускоряется, когда продолжитель­ность дня составляет около 20 ч. К этим культурам относятся рожь, овес, пшеница, лен, горох, шпинат, клевер и др.;

нейтральные по отношению к длине дня , развитие которых не зависит от продолжительности дня, например томат, гречиха, бобовые, ревень.

Установлено, что для начала цветения растений необходимо преобладание в лучистом потоке определенного спектрального состава. Растения короткого дня быстрее развиваются, когда максимум излучения приходится на сине-фиолетовые лучи, а растения длинного дня - на красные. Продолжительность светлой части суток (астрономическая длина дня) зависит от времени года и географической широты. На экваторе продолжительность дня в течение всего года равна 12 ч ± 30 мин. При продвижении от экватора к полюсам после весеннего равноденствия (21.03) длина дня увеличивается к се­веру и уменьшается к югу. После осеннего равноденствия (23.09) распределение продолжительности дня обратное. В Северном полушарии на 22.06 приходится самый длинный день, продолжительность которого севернее Полярного круга 24 ч. Самый короткий день в Северном полушарии 22.12, а за Полярным кру­гом в зимние месяцы Солнце вообще не поднимается над гори­зонтом. В средних же широтах, например в Москве, продолжи­тельность дня в течение года меняется от 7 до 17,5 ч.

2. Виды солнечной радиации.

Солнечная радиация состоит из трех составляющих: прямой солнечной радиации, рассеянной и суммарной.

ПРЯМАЯ СОЛНЕЧНАЯ РАДИАЦИЯ S – радиация, поступающая от Солнца в атмосферу и затем на земную поверхность в виде пучка параллельных лучей. Ее интенсивность измеряется в калориях на см2 в минуту. Она зависит от высоты солнца и состояния атмосферы (облачность, пыль, водяной пар). Годовая сумма прямой солнечной радиации на горизонтальную поверхность территории Ставропольского края составляет 65-76 ккал/ см2/мин. На уровне моря при высоком положении Солнца (лето, полдень) и хорошей прозрачности прямая солнечная радиация составляет 1,5 ккал/ см2/мин. Это коротковолновая часть спектра. При прохождении потока прямой солнечной радиации через атмосферу происходит его ослабление, вызванное поглощением (около 15 %) и рассеянием (около 25 %) энергии газами, аэрозо­лями, облаками.

Поток прямой солнечной радиации, падающий на горизонтальную поверхность называют инсоляцией S = S sin ho – вертикальная составляющая прямой солнечной радиации.

S количество тепла, получаемого перпендикулярной к лучу поверхностью,

ho высота Солнца, т. е. угол, образованный солнечным лучом с горизонтальной поверхностью.

На границе атмосферы интенсивность солнечной радиации составляет So = 1,98 ккал/ см2/мин. – по международному соглашению 1958г. И называется солнечной постоянной. Такой бы она была у поверхности, если бы атмосфера была абсолютно прозрачной.

Рис. 2.1. Путь солнечного луча в атмосфере при разной высоте Солнца

РАССЕЯНАЯ РАДИАЦИЯ D часть солнечной радиации в результате рассеяния атмосферой уходит обратно в космос, но значительная ее часть поступает на Землю в виде рассеянной радиации. Максимум рассеянной радиации + 1 ккал/ см2/мин. Отмечается при чистом небе, если на нем высокие облака. При пасмурном небе спектр рассеянной радиации сходен с солнечным. Это коротковолновая часть спектра. Длина волны 0,17-4мк.

СУММАРНАЯ РАДИАЦИЯ Q - состоит из рассеянной и прямой радиации на горизонтальную поверхность. Q = S + D .

Соотношение между прямой и рассеянной радиацией в со­ставе суммарной радиации зависит от высоты Солнца, облачно­сти и загрязненности атмосферы, высоты поверхности над уров­нем моря. С увеличением высоты Солнца доля рассеянной ра­диации при безоблачном небе уменьшается. Чем прозрачнее ат­мосфера и чем выше Солнце, тем меньше доля рассеянной радиации. При сплошной плотной облачности суммарная ради­ация полностью состоит из рассеянной радиации. Зимой вслед­ствие отражения радиации от снежного покрова и ее вторичного рассеяния в атмосфере доля рассеянной радиации в составе сум­марной заметно увеличивается.

Свет и тепло, получаемые растениями от Солнца, - результат действия суммарной солнечной радиации. Поэтому большое значение для сельского хозяйства имеют данные о суммах ради­ации, получаемых поверхностью за сутки, месяц, вегетационный период, год.

Отраженная солнечная радиация. Альбедо . Суммарная радиа­ция, дошедшая до земной поверхности, частично отражаясь от нее, создает отраженную солнечную радиацию (RK), направленную от земной поверхности в атмосферу. Значение отраженной ра­диации в значительной степени зависит от свойств и состояния отражающей поверхности: цвета, шероховатости, влажности и др. Отражательную способность любой поверхности можно ха­рактеризовать величиной ее альбедо (Ак), под которым понимают отношение отраженной солнечной радиации к суммарной. Аль­бедо обычно выражают в процентах:

Наблюдения показывают, что альбедо различных поверхнос­тей изменяется в сравнительно узких пределах (10...30 %), ис­ключение составляют снег и вода.

Альбедо зависит от влажности почвы, с возрастанием которой оно уменьшается, что имеет важное значение в процессе измене­ния теплового режима орошаемых полей. Вследствие уменьше­ния альбедо при увлажнении почвы увеличивается поглощаемая радиация. Альбедо различных поверхностей имеет хорошо выра­женный дневной и годовой ход, обусловленный зависимостью альбедо от высоты Солнца. Наименьшее значение альбедо на­блюдают в околополуденные часы, а в течение года - летом.

Собственное излучение Земли и встречное излучение атмосфе­ры. Эффективное излучение. Земная поверхность как физическое тело, имеющее температуру выше абсолютного нуля (-273 °С), является источником излучения, которое называют собственным излучением Земли (Е3). Оно направлено в атмосферу и почти пол­ностью поглощается водяным паром, капельками воды и угле­кислым газом, содержащимися в воздухе. Излучение Земли за­висит от температуры ее поверхности.

Атмосфера, поглощая небольшое количество солнечной ра­диации и практически всю энергию, излучаемую земной поверх­ностью, нагревается и, в свою очередь, также излучает энергию. Около 30 % атмосферной радиации уходит в космическое про­странство, а около 70 % приходит к поверхности Земли и назы­вается встречным излучением атмосферы (Еа).

Количество энергии, излучаемое атмосферой, прямо пропор­ционально ее температуре, содержанию углекислого газа, озона и облачности.

Поверхность Земли поглощает это встречное излучение по­чти целиком (на 90...99 %). Таким образом, оно является для земной поверхности важным источником тепла в дополнение к поглощаемой солнечной радиации. Это влияние атмосферы на тепловой режим Земли называют парниковым или оранжерейным эффектом вследствие внешней аналогии с действием стекол в парниках и оранжереях. Стекло хорошо пропускает солнечные лучи, нагревающие почву и растения, но задерживает тепловое излучение нагревшейся почвы и растений.

Разность между собственным излучением поверхности Земли и встречным излучением атмосферы называют эффективным из­лучением: Еэф.

Еэф= Е3-Еа

В ясные и малооблачные ночи эффективное излучение гораз­до больше, чем в пасмурные, поэтому больше и ночное охлажде­ние земной поверхности. Днем оно перекрывается поглощенной суммарной радиацией, вследствие чего температура поверхности повышается. При этом растет и эффективное излучение. Земная поверхность в средних широтах теряет за счет эффективного из­лучения 70...140 Вт/м2, что составляет примерно половину того количества тепла, которое она получает от поглощения солнеч­ной радиации.

3. Спектральный состав радиации.

Солнце, как источник излучения, обладает многообразием испускаемых волн. Потоки лучистой энергии по длине волн условно делят на ко­ротковолновую (X < 4 мкм) и длинноволновую (А. > 4 мкм) радиа­цию. Спектр солнечной радиации на границе земной атмосферы практически заключается между длинами волн 0,17 и 4 мкм, а земного и атмосферного излучения - от 4 до 120 мкм. Следова­тельно, потоки солнечного излучения (S, D, RK) относятся к ко­ротковолновой радиации, а излучение Земли (£3) и атмосферы (Еа) - к длинноволновой.

Спектр солнечной радиации можно разделить на три каче­ственно различные части: ультрафиолетовую (Y < 0,40 мкм), ви­димую (0,40 мкм < Y < 0,75 мкм) и инфракрасную (0,76 мкм < Y < 4 мкм). До ультрафиолетовой части спектра сол­нечной радиации лежит рентгеновское излучение, а за инфра­красной - радиоизлучение Солнца. На верхней границе атмос­феры на ультрафиолетовую часть спектра приходится около 7 % энергии солнечного излучения, 46 - на видимую и 47 % - на инфракрасную.

Радиацию, излучаемую Землей и атмосферой, называют даль­ней инфракрасной радиацией.

Биологическое действие разных видов радиации на растения различно. Ультрафиолетовая радиация замедляет ростовые про­цессы, но ускоряет прохождение этапов формирования репро­дуктивных органов у растений.

Значение инфракрасной радиации , которая активно поглощается водой листьев и стеблей растений, состоит в ее теп­ловом эффекте, что существенно влияет на рост и развитие рас­тений.

Дальняя инфракрасная радиация производит лишь тепловое действие на растения. Ее влияние на рост и развитие растений несущественно.

Видимая часть солнечного спектра , во-первых, создает осве­щенность. Во-вторых, с областью видимой радиации почти со­впадает (захватывая частично область ультрафиолетовой радиа­ции) так называемая физиологическая радиация (А, = = 0,35...0,75 мкм), которая поглощается пигментами листа. Ее энергия имеет важное регуляторно-энергетическое значение в жизни растений. В пределах этого участка спектра выделяется область фотосинтетически активной радиации.

4. Поглощение и рассеивание радиации в атмосфере.

Проходя через земную атмосферу, солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями . При этом изменяется и ее спектральный состав. При различной высоте солнца и различной высоте пункта наблюдений над земной поверхностью длина пути, проходимого солнечным лучом в атмосфере, неодинакова. При уменьшении высоты особенно сильно уменьшается ультрафиолетовая часть радиации, несколько меньше – видимая и лишь незначительно – инфракрасная.

Рассеяние радиации в атмосфере происходит главным образом в результате непрерывных колебаний (флуктаций) плотности воздуха в каждой точке атмосферы, вызванных образованием и разрушением некоторых «скоплений» (сгустков) молекул атмосферного газа. Солнечную радиацию рассеивают также частицы аэрозоля. Интенсивность рассеяния характеризуется коэффициентом рассеяния.

К= добавить формулу.

Интенсивность рассеяния зависит от количеств рассеивающих частиц в единице объема, от их размера и природы, а также от длин волн самой рассеиваемой радиации.

Лучи рассеиваются тем сильнее, чем меньше длина волны. Например фиолетовые лучи рассеиваются в 14 раз сильнее красных, этим объясняется голубой цвет неба. Как отмечалось выше (см. разд. 2.2), прямая солнечная ради­ация, проходя через атмосферу, частично рассеивается. В чис­том и сухом воздухе интенсивность коэффициента молекуляр­ного рассеяния подчиняется закону Релея:

к= с/ Y 4 ,

где С - коэффициент, зависящий от числа молекул газа в единице объема; X - длина рассеиваемой волны.

Поскольку длина дальних волн красного света почти вдвое больше длины волн фиолетового света, первые рассеиваются молекулами воздуха в 14 раз меньше, чем вторые. Так как перво­начальная энергия (до рассеяния) фиолетовых лучей меньше, чем синих и голубых, то максимум энергии в рассеянном свете (рассеянной солнечной радиации) смещается на сине-голубые лучи, что и обусловливает голубой цвет неба. Таким образом, рассеянная радиация более богата фотосинтетически активными лучами, чем прямая.

В воздухе, содержащем примеси (мелкие капельки воды, кри­сталлики льда, пылинки и т. д.), рассеяние одинаково для всех участков видимой радиации. Поэтому небо приобретает белесо­ватый оттенок (появляется дымка). Облачные же элементы (крупные капельки и кристаллики) вообще не рассеивают сол­нечные лучи, а диффузно их отражают. В результате облака, ос­вещенные Солнцем, имеют белый цвет.

5. ФАР (фотосинтетическиактивная радиация)

Фотосинтетически активная радиация. В процессе фотосинте­за используется не весь спектр солнечной радиации, а только его

часть, находящаяся в интервале длин волн 0,38...0,71 мкм, - фо­тосинтетически активная радиация (ФАР).

Известно, что видимая радиация, воспринимаемая глазом че­ловека как белый цвет, состоит из цветных лучей: красных, оранжевых, желтых, зеленых, голубых, синих и фиолетовых.

Усвоение энергии солнечной радиации листьями растений селективно (избирательно). Наиболее интенсивно листья погло­щают сине-фиолетовые (X = 0,48...0,40 мкм) и оранжево-крас­ные (X = 0,68 мкм) лучи, менее - желто-зеленые (А. = 0,58...0,50 мкм) и дальние красные (А. > 0,69 мкм) лучи.

У земной поверхности максимум энергии в спектре прямой солнечной радиации, когда Солнце находится высоко, прихо­дится на область желто-зеленых лучей (диск Солнца желтый). Когда же Солнце располагается у горизонта, максимальную энергию имеют дальние красные лучи (солнечный диск крас­ный). Поэтому энергия прямого солнечного света мало участву­ет в процессе фотосинтеза.

Так как ФАР является одним из важнейших факторов про­дуктивности сельскохозяйственных растений, информация о ко­личестве поступающей ФАР, учет ее распределения по террито­рии и во времени имеют большое практическое значение.

Интенсивность ФАР можно измерить, но для этого необходимы специальные светофильтры, пропускающие только волны в диапазоне 0,38...0,71 мкм. Такие приборы есть, но на сети актинометрических станций их не применяют, а измеряют интен­сивность интегрального спектра солнечной радиации. Значение ФАР можно рассчитать по данным о приходе прямой, рассеян­ной или суммарной радиации с помощью коэффициентов, пред­ложенных, X. Г. Тоомингом и:

Qфар = 0,43 S " +0,57 D);

составлены карты распределения месячных и годовых сумм Фар на территории России.

Для характеристики степени использования посевами ФАР применяют коэффициент полезного использования ФАР:

КПИфар= (сумма Q / фар/сумма Q / фар) 100%,

где сумма Q / фар - сумма ФАР, затрачиваемая на фотосинтез за период вегетации расте­ний; сумма Q / фар - сумма ФАР, поступающая на посевы за этот период;

Посевы по их средним значениям КПИФАр разделяют на группы (по): обычно наблюдаемые - 0,5...1,5 %; хорошие-1,5...3,0; рекордные - 3,5...5,0; теорети­чески возможные - 6,0...8,0 %.

6. РАДИАЦИОННЫЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ

Разность между приходящими и уходящими потоками лучис­той энергии называют радиационным балансом земной поверхнос­ти (В).

Приходная часть радиационного баланса земной поверхности днем состоит из прямой солнечной и рассеянной радиации, а также излучения атмосферы. Расходной частью баланса являют­ся излучение земной поверхности и отраженная солнечная ра­диация:

B = S / + D + Ea - Е3- Rk

Уравнение можно записать и в другом виде: B = Q - RK - Еэф.

Для ночного времени уравнение радиационного баланса име­ет следующий вид:

В = Еа - Е3, или В = -Еэф.

Если приход радиации больше, чем расход, то радиационный баланс положительный и деятельная поверхность* нагревается. При отрицательном балансе она охлаждается. Летом радиацион­ный баланс днем положительный, а ночью - отрицательный. Переход через ноль происходит утром примерно через 1 ч после восхода Солнца, а вечером за 1...2 ч до захода Солнца.

Годовой радиационный баланс в районах, где устанавливает­ся устойчивый снежный покров, в холодное время года имеет отрицательные значения, в теплое - положительные.

Радиационный баланс земной поверхности существенно вли­яет на распределение температуры в почве и приземном слое ат­мосферы, а также на процессы испарения и снеготаяния, обра­зование туманов и заморозков, изменение свойств воздушных масс (их трансформацию).

Знание радиационного режима сельскохозяйственных угодий позволяет рассчитывать количество радиации, поглощенной по­севами и почвой в зависимости от высоты Солнца, структуры посева, фазы развития растений. Данные о режиме необходимы и для оценки разных приемов регулирования температуры и влажности почвы, испарения, от которых зависят рост и разви­тие растений, формирование урожая, его количество и качество.

Эффективными агрономическими приемами воздействия на радиационный, а следовательно, и на тепловой режим деятель­ной поверхности является мульчирование (покрытие почвы тон­ким слоем торфяной крошки, перепревшим навозом, древесны­ми опилками и др.), укрытие почвы полиэтиленовой пленкой, орошение. Все это изменяет отражательную и поглощательную способность деятельной поверхности.

* Деятельная поверхность - поверхность почвы, воды или растительности, которая непосредственно поглощает солнечную и атмосферную радиацию и отда­ет излучение в атмосферу, чем регулирует термический режим прилегающих слоев воздуха и нижележащих слоев почвы, воды, растительности.

Вам также будет интересно:

Клод шеннон краткая биография и интересные факты
Анатолий Ушаков, д. т. н, проф. каф. систем управления и информатики, университет «ИТМО»...
Воспаление придатков: причины, диагностика, лечение
Беспокоят тянущие или резкие боли внизу живота, нерегулярные месячные или их отсутствие,...
Болгарский красный сладкий перец: польза и вред
Сладкий (болгарский) перец – овощная культура, выращиваемая в средних и южных широтах. Овощ...
Тушеная капуста - калорийность
Белокочанная капуста - низкокалорийный овощ, и хотя в зависимости от способа тепловой...
Снежнянский городской методический кабинет
Отдел образования – это группа структурных подразделений: Аппарат: Начальник отдела...