Дети, мода, аксессуары. Уход за телом. Здоровье. Красота. Интерьер

Календарь Летоисчисление астрономия

Созвездие телец в астрономии, астрологии и легендах

Правила русской орфографии и пунктуации полный академический справочник Проп правила русской орфографии и пунктуации

Внеклассное мероприятие "Адыгея – родина моя!

Самые правдивые гадания на любовь

Луна таро значение в отношениях

Шницель из свинины на сковороде

Лихорадка Эбола — симптомы, лечение, история вируса

Ученым удалось измерить уровень радиации на марсе Максимальная интенсивность солнечного излучения на поверхности марса

Биография екатерины романовны дашковой Биография дашковой екатерины романовой

Сонник: к чему снится Собирать что-то

Cонник спасать, к чему снится спасать во сне видеть

Плюшки с сахаром в виде сердечек

Со свинным рылом да в калашный ряд Минфин придумал для россиян «гарантированный пенсионный продукт»

Клод шеннон краткая биография и интересные факты

Инфракрасное ультрафиолетовое и рентгеновское излучение таблица. Изучение нового материала. Основные меры безопасности и защиты от воздействия ультрафиолетового излучения

Светолечение (фототерапия) - лечение светом. Инфракрасное излучение. Видимое излучение. Ультрафиолетовое излучение

Светолечение представляет собой дозированное воздействие инфракрасного, видимого и ультрафиолетового излучения на организм человека с целью лечения. Для этого применяются специальные лампы фототерапии. Данный метод лечения также часто называют фототерапией (от греческого photos - свет).

С давних времен люди обращали внимание на целительное воздействие солнечных лучей на здоровье человека. Солнечный спектр на 10% состоит из ультрафиолетовых лучей, на 40% - из лучей видимого спектра и на 50% - из инфракрасных лучей. Все эти виды электромагнитных излучений получили широкое распространение в медицине.

В медицинских учреждениях для данного вида лечения используются искусственные излучатели с нитями накаливания. Они нагреваются при помощи электрического тока.

Инфракрасное излучение: влияние на человека, лечение

Инфракрасное излучение представляет собой тепловое излучение. Его лучи способны проникать в ткани организма на большую глубину, по сравнению с другими видами световой энергии. Это приводит к прогреванию всей толщи кожи и части подкожных тканей. Структуры, которые расположены глубже, не подвержены воздействию данного вида излучения.

Основными показаниями к его применению являются: некоторые заболевания опорно-двигательного аппарата, негнойные хронические и подострые воспалительные местные процессы, происходящие, в том числе, во внутренних органах. Лечат с его помощью пациентов с заболеваниями центральной и периферической нервной системы, периферических сосудов, глаз, уха, кожи. Помогает этот метод и при остаточных явлениях после ожогов и отморожений.

Данный вид излучения способствует устранению воспалительных процессов, ускоряет заживление, повышает местную сопротивляемость и противоинфекционную защиту.

Если правила проведения процедуры нарушаются, существует опасность серьезного перегрева тканей и образования термических ожогов. Может возникнуть также перегрузка кровообращения, которая противопоказана при сердечно-сосудистых заболеваниях.



Противопоказаниями к применению являются: наличие доброкачественных или злокачественных новообразований, активные формы туберкулеза, гипертоническая болезнь III стадии, кровотечение, а также недостаточность кровообращения.

Видимое излучение

Видимое излучение представляет собой участок общего электромагнитного спектра, который состоит из 7 цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Оно может проникать в кожу на глубину до 1 см. Но основное воздействие оно оказывает через сетчатку глаза.

Восприятие человеком цветовых компонентов видимого света воздействует на его центральную нервную систему. Этот вид излучения применяется при лечении пациентов, имеющих различные заболевания нервной системы.

Как известно, например, желтый, зеленый и оранжевый цвета повышают настроение, а синий и фиолетовый действуют наоборот. Красный цвет возбуждает деятельность коры головного мозга. Синий - тормозит нервно-психическую деятельность. Очень важное значение для эмоционального состояния человека имеет белый цвет. Его нехватка приводит к депрессиям.

Ультрафиолетовое излучение

Ультрафиолетовое излучение обладает наиболее мощной энергией и активностью. Однако при этом его лучи способны проникать в ткани человека только на глубину до 1 мм.

Наибольшей чувствительностью к лучам данного типа отличаются наша кожа и слизистые оболочки. Маленькие дети имеют повышенную чувствительность к ультрафиолету.

Ультрафиолетовое облучение способствует повышению защитных сил организма, оказывает десенсибилизирующее воздействие, улучшает показатели жирового обмена. Оно также нормализует процессы свертывания крови, улучшает функции внешнего дыхания, увеличивает активность коры надпочечников. Дефицит ультрафиолета приводит к авитаминозу, понижению иммунитета, ухудшению работы нервной системы и проявлениям психической неустойчивости.

Показания к применению ультрафиолетового излучения

Показаниями к применению служат заболевания кожи, суставов, органов дыхания, женских половых органов, периферической нервной системы. Назначается для скорейшего заживления ран и с целью компенсации ультрафиолетовой недостаточности в организме. Профилактирует рахит.

Противопоказания к применению ультрафиолетового излучения

Противопоказаниями являются : острые воспалительные процессы, опухоли, кровотечения, гипертоническая болезнь III стадии, недостаточность кровообращения II-III стадии, активные формы туберкулеза и др.

Лазерное излучение.

Лазерная или квантовая терапия - это метод светолечения, который заключается в использовании пучков лазерного излучения. Лазерное излучение обладает следующими лечебными свойствами: противовоспалительное, репаративное, гипоальгезивное, иммуностимулирующее и бактерицидное.

Назначается оно при большом количестве заболеваний костно-мышечной, сердечно-сосудистой, дыхательной, пищеварительной, нервной, мочеполовой систем. Применяется также для лечения кожных заболеваний, заболеваний ЛОР-органов и диабетических ангиопатий. Противопоказания такие же, как и у других видов светового излучения.

Энергия Солнца представляет собой электромагнитные волны, которые подразделяются на несколько частей спектра:

  • рентгеновские лучи - с самой короткой длиной волны (ниже 2 нм);
  • длина волны ультрафиолетового излучения составляет от 2 до 400 нм;
  • видимая часть света, которая улавливается глазом человека и животных (400-750 нм);
  • теплое окислительное (свыше 750 нм).

Каждая часть находит свое применение и имеет большое значение в жизни планеты и всей ее биомассы. Мы же рассмотрим, что представляют собой лучи в диапазоне от 2 до 400 нм, где они используются и какую роль играют в жизни людей.

История открытия УФ-излучения

Первые упоминания относятся еще к XIII веку в описаниях философа из Индии. Он писал о невидимом глазу фиолетовом свете, который был им обнаружен. Однако технических возможностей того времени явно недоставало, чтобы подтвердить это экспериментально и изучить подробно.

Удалось же это пять веков спустя физику из Германии Риттеру. Именно он проводил опыты над хлоридом серебра по распаду его под воздействием электромагнитного излучения. Ученый увидел, что быстрее данный процесс идет не в той области света, которая была к тому времени уже открыта и называлась инфракрасной, а в противоположной. Выяснилось, что это новая область, до сих пор не исследованная.

Таким образом, в 1842 году было открыто ультрафиолетовое излучение, свойства и применение которого в последствии подверглись тщательному разбору и изучению со стороны разных ученых. Большой вклад в это внесли такие люди, как: Александр Беккерель, Варшавер, Данциг, Македонио Меллони, Франк, Парфенов, Галанин и другие.

Общая характеристика

Что же представляет собой применение которого на сегодняшний день столь широко в различных отраслях деятельности человека? Во-первых, следует обозначить, что появляется данный света только при очень высоких температурах от 1500 до 2000 0 С. Именно в таком интервале УФ достигает пика активности по воздействию.

По физической природе это электромагнитная волна, длина которой колеблется в довольно широких пределах - от 10 (иногда от 2) до 400 нм. Весь диапазон данного излучения условно делится на две области:

  1. Ближний спектр. Доходит до Земли через атмосферу и озоновый слой от Солнца. Длина волны - 380-200 нм.
  2. Далекий (вакуумный). Активно поглощается озоном, кислородом воздуха, компонентами атмосферы. Исследовать удается только специальными вакуумными устройствами, за что и получил свое название. Длина волны - 200-2 нм.

Существует своя классификация видов, которые имеет ультрафиолетовое излучение. Свойства и применение находит каждый из них.

  1. Ближний.
  2. Дальний.
  3. Экстремальный.
  4. Средний.
  5. Вакуумный.
  6. Длинноволновой черный свет (УФ-А).
  7. Коротковолновой гермицидный (УФ-С).
  8. Средневолновой УФ-В.

Длина волны ультрафиолетового излучения у каждого вида своя, но все они находятся в общих уже обозначенных ранее пределах.

Интересным является УФ-А, или, так называемый, черный свет. Дело в том, что данный спектр имеет длину волны от 400-315 нм. Это находится на границе с видимым светом, который человеческий глаз способен улавливать. Поэтому такое излучение, проходя через определенные предметы или ткани, способно переходить в область видимого фиолетового света, и люди различают его как черный, темно-синий или темно-фиолетовый оттенок.

Спектры, которые дают источники ультрафиолетового излучения, могут быть трех типов:

  • линейчатые;
  • непрерывные;
  • молекулярные (полосные).

Первые характерны для атомов, ионов, газов. Вторая группа - для рекомбинационного, тормозного излучения. Источники третьего типа чаще всего встречаются при изучении разреженных молекулярных газов.

Источники ультрафиолетового излучения

Основные источники УФ-лучей делятся на три большие категории:

  • естественные или природные;
  • искусственные, созданные человеком;
  • лазерные.

Первая группа включает в себя единственный вид концентратора и излучателя - Солнце. Именно небесное светило дает мощнейший заряд данного типа волн, которые способны проходить через и достигать поверхности Земли. Однако не всей своей массой. Учеными выдвигается теория о том, что жизнь на Земле зародилась только тогда, когда озоновый экран стал защищать ее от избыточного проникновения вредного в больших концентрациях УФ-излучения.

Именно в этот период стали способны существовать белковые молекулы, нуклеиновые кислоты и АТФ. До сегодняшнего дня слой озона вступает в тесное взаимодействие с основной массой УФ-А, УФ-В и УФ-С, обезвреживая их, и не давая пройти через себя. Поэтому защита от ультрафиолетового излучения всей планеты - исключительно его заслуга.

От чего зависит концентрация проникающего на Землю ультрафиолета? Есть несколько основных факторов:

  • озоновые дыры;
  • высота над уровнем моря;
  • высота солнцестояния;
  • атмосферное рассеивание;
  • степень отражения лучей от земных природных поверхностей;
  • состояние облачных паров.

Диапазон ультрафиолетового излучения, проникающего на Землю от Солнца, колеблется в пределах от 200 до 400 нм.

Следующие источники - это искусственные. К ним можно отнести все те приборы, устройства, технические средства, которые были сконструированы человеком для получения нужного спектра света с заданными параметрами длины волны. Это было сделано с целью получать ультрафиолетовое излучение, применение которого может быть крайне полезным в разных областях деятельности. К искусственным источникам относятся:

  1. Эритемные лампы, обладающие способностью активизировать синтез витамина D в коже. Это предохраняет от заболеваний рахитом и лечит его.
  2. Аппараты для соляриев, в которых люди получают не только красивый естественный загар, но и лечатся от заболеваний, возникающих при недостатке открытого солнечного света (так называемая, зимняя депрессия).
  3. Лампы-аттрактанты, позволяющие бороться с насекомыми в условиях помещений безопасно для человека.
  4. Ртутно-кварцевые устройства.
  5. Эксилампа.
  6. Люминесцентные устройства.
  7. Ксеноновые лампы.
  8. Газоразрядные устройства.
  9. Высокотемпературная плазма.
  10. Синхротронное излучение в ускорителях.

Еще один тип источников - лазеры. Их работа основана на генерации различных газов - как инертных, так и нет. Источниками могут быть:

  • азот;
  • аргон;
  • неон;
  • ксенон;
  • органические сцинтилляторы;
  • кристаллы.

Совсем недавно, около 4 лет назад, был изобретен лазер, работающий на свободных электронах. Длина ультрафиолетового излучения в нем равна той, которая наблюдается в условиях вакуума. Лазерные поставщики УФ используются в биотехнологических, микробиологических исследованиях, масс-спектрометрии и так далее.

Биологическое воздействие на организмы

Действие ультрафиолетового излучения на живых существ двояко. С одной стороны, при его недостатке могут возникать заболевания. Это выяснилось только в начале прошлого столетия. Искусственное облучение специальным УФ-А в необходимых нормах способно:

  • активизировать работу иммунитета;
  • вызвать образование важных сосудорасширяющих соединений (гистамин, например);
  • укрепить кожно-мышечную систему;
  • улучшить работу легких, повысить интенсивность газообмена;
  • повлиять на скорость и качество метаболизма;
  • повысить тонус организма, активизировав выработку гормонов;
  • увеличить проницаемость стенок сосудов на коже.

Если УФ-А в достаточном количестве попадает в организм человека, то у него не возникает таких заболеваний, как зимняя депрессия или световое голодание, а также значительно снижается риск развития рахита.

Влияние ультрафиолетового излучения на организм бывает следующих типов:

  • бактерицидное;
  • противовоспалительное;
  • регенерирующее;
  • болеутоляющее.

Эти свойства во многом объясняют широкое применение УФ в медицинских учреждениях любого типа.

Однако, помимо перечисленных плюсов, есть и отрицательные стороны. Существует ряд заболеваний и недугов, которые можно приобрести, если не дополучать или, напротив, принимать в избыточном количестве рассматриваемые волны.

  1. Рак кожи. Это самое опасное воздействие ультрафиолетового излучения. Меланома способна образоваться при избыточном влиянии волн от любого источника - как природного, так и созданного людьми. Это особенно касается любителей загара в солярии. Во всем необходима мера и осторожность.
  2. Разрушительное действие на сетчатку глазных яблок. Другими словами, может развиться катаракта, птеригиум или ожег оболочки. Вредное избыточное воздействие УФ на глаза было доказано учеными уже давно и подтверждено экспериментальными данными. Поэтому при работе с такими источниками следует соблюдать На улице оградить себя можно при помощи темных очков. Однако в этом случае следует опасаться подделок, ведь если стекла не снабжены УФ-отталкивающими фильтрами, то разрушающее действие будет еще сильнее.
  3. Ожоги на коже. В летнее время их можно заработать, если долгое время неконтролируемо подвергать себя воздействию УФ. Зимой же можно получить их из-за особенности снега отражать практически полностью данные волны. Поэтому облучение происходит и со стороны Солнца, и со стороны снега.
  4. Старение. Если люди долгое время находятся под воздействием УФ, то у них начинают очень рано проявляться признаки старения кожи: вялость, морщины, дряблость. Это происходит от того, что защитные барьерные функции покровов ослабевают и нарушаются.
  5. Воздействие с последствиями во времени. Заключаются в проявлениях негативных воздействий не в молодом возрасте, а ближе к старости.

Все эти результаты являются последствиями нарушения дозировок УФ, т.е. они возникают, когда использование ультрафиолетового излучения проводится нерационально, неправильно, и без соблюдения мер безопасности.

Ультрафиолетовое излучение: применение

Основные области использования отталкиваются от свойств вещества. Это справедливо и для спектральных волновых излучений. Так, главными характеристиками УФ, на которых базируется его применение, являются:

  • химическая активность высокого уровня;
  • бактерицидное воздействие на организмы;
  • способность вызывать свечение различных веществ разными оттенками, видимыми глазом человека (люминесценция).

Это позволяет широко использовать ультрафиолетовое излучение. Применение возможно в:

  • спектрометрических анализах;
  • астрономических исследованиях;
  • медицине;
  • стерилизации;
  • обеззараживании питьевой воды;
  • фотолитографии;
  • аналитическом исследовании минералов;
  • УФ-фильтрах;
  • для ловли насекомых;
  • для избавления от бактерий и вирусов.

Каждая из перечисленных областей использует определенный тип УФ со своим спектром и длиной волны. В последнее время данный тип излучения активно используется в физических и химических исследованиях (установление электронной конфигурации атомов, кристаллической структуры молекул и различных соединений, работа с ионами, анализ физических превращений на различных космических объектах).

Есть еще одна особенность воздействия УФ на вещества. Некоторые полимерные материалы способны разлагаться под воздействием интенсивного постоянного источника данных волн. Например, такие, как:

  • полиэтилен любого давления;
  • полипропилен;
  • полиметилметакрилат или органическое стекло.

В чем выражается воздействие? Изделия из перечисленных материалов теряют окраску, трескаются, тускнеют и, в конечном итоге, разрушаются. Поэтому их принято называть чувствительными полимерами. Эту особенность деградации углеродной цепи при условиях солнечной освещенности активно используют в нанотехнологиях, рентгенолитографии, трансплантологии и прочих областях. Делается это в основном для сглаживания шероховатостей поверхности изделий.

Спектрометрия - основная область аналитической химии, которая специализируется на идентификации соединений и их состава по способности поглощать УФ-свет определенной длины волны. Получается, что спектры уникальны для каждого вещества, поэтому можно их классифицировать по результатам спектрометрии.

Также применение ультрафиолетового бактерицидного излучения осуществляется для привлечения и уничтожения насекомых. Действие основано на способности глаза насекомого улавливать невидимые человеку коротковолновые спектры. Поэтому животные летят на источник, где и подвергаются уничтожению.

Использование в соляриях - специальных установках вертикального и горизонтального типа, в которых человеческое тело подвергается воздействию УФ-А. Делается это для активизации выработки в коже меланина, придающего ей более темный цвет, гладкость. Кроме того, при этом подсушиваются воспаления и уничтожаются вредные бактерии на поверхности покровов. Особое внимание следует уделять защите глаз, чувствительных зон.

Медицинская область

Применение ультрафиолетового излучения в медицине основано также на его способностях уничтожать невидимые глазу живые организмы - бактерии и вирусы, и на особенностях, происходящих в организме во время грамотного освещения искусственным или естественным облучением.

Основные показания к лечению УФ можно обозначить в нескольких пунктах:

  1. Все виды воспалительных процессов, ран открытого типа, нагноений и открытых швов.
  2. При травмах тканей, костей.
  3. При ожогах, обморожениях и кожных заболеваниях.
  4. При респираторных недугах, туберкулезе, бронхиальной астме.
  5. При возникновении и развитии различных видов инфекционных заболеваний.
  6. При недугах, сопровождающихся сильными болевыми ощущениями, невралгии.
  7. Заболевания горла и носовой полости.
  8. Рахиты и трофическая
  9. Стоматологические заболевания.
  10. Регуляция давления кровяного русла, нормализация работы сердца.
  11. Развитие раковых опухолей.
  12. Атеросклероз, почечная недостаточность и некоторые другие состояния.

Все эти заболевания могут иметь весьма серьезные последствия для организма. Поэтому лечение и профилактика использованием УФ - это настоящее медицинское открытие, спасающее тысячи и миллионы людских жизней, сохраняющее и возвращающее им здоровье.

Еще один вариант использования УФ с медицинской и биологической точки зрения - это обеззараживание помещений, стерилизация рабочих поверхностей и инструментов. Действие основано на способности УФ угнетать развитие и репликацию молекул ДНК, что приводит к их вымиранию. Бактерии, грибки, простейшие и вирусы гибнут.

Основной проблемой при использовании такого излучения для стерилизации и обеззараживания помещения является область освещения. Ведь организмы уничтожаются только при непосредственном воздействии прямых волн. Все, что остается за пределами, продолжает свое существование.

Аналитическая работа с минералами

Способность вызывать у веществ люминесценцию позволяет применять УФ для анализа качественного состава минералов и ценных горных пород. В этом плане очень интересными бывают драгоценные, полудрагоценные и поделочные камни. Каких только оттенков они не дают при облучении их катодными волнами! Очень интересно об этом писал Малахов, знаменитый геолог. В его труде рассказывается о наблюдениях за свечением цветовой палитры, которое способны давать минералы в разных источниках облучения.

Так, например, топаз, который в видимом спектре имеет красивый насыщенный голубой цвет, при облучении высвечивается ярко-зеленым, а изумруд - красным. Жемчуг вообще не может дать какой-то определенный цвет и переливается многоцветьем. Зрелище в результате получается просто фантастическое.

Если в состав исследуемой породы входят примеси урана, то высвечивание покажет зеленый цвет. Примеси мелита дают синий, а морганита - сиреневый или бледно-фиолетовый оттенок.

Использование в фильтрах

Для использования в фильтрах также применяется ультрафиолетовое бактерицидное излучение. Типы таких структур могут быть разные:

  • твердые;
  • газообразные;
  • жидкие.

Основное применение такие устройства находят в химической отрасли, в частности, в хроматографии. С их помощью можно провести качественный анализ состава вещества и идентифицировать его по принадлежности к тому или иному классу органических соединений.

Обработка питьевой воды

Обеззараживание ультрафиолетовым излучением питьевой воды является одним из самых современных и качественных методов ее очистки от биологических примесей. Преимущества этого метода следующие:

  • надежность;
  • эффективность;
  • отсутствие посторонних продуктов в воде;
  • безопасность;
  • экономичность;
  • сохранение органолептических свойств воды.

Именно поэтому на сегодняшний день такая методика обеззараживания идет в ногу с традиционным хлорированием. Действие основано на тех же особенностях - разрушение ДНК вредоносных живых организмов в составе воды. Используют УФ с длиной волны около 260 нм.

Помимо прямого воздействия на вредителей, ультрафиолет используется также для разрушения остатков химических соединений, которые применяются для смягчения, очищения воды: таких, как, например, хлор или хлорамин.

Лампа черного света

Такие устройства снабжены специальными излучателями, способными давать волны большой длинны, близкой к видимому. Однако они все равно остаются неразличимы для человеческого глаза. Используются такие лампы в качестве устройств, читающих тайные знаки из УФ: например, в паспортах, документах, денежных купюрах и так далее. То есть, такие метки могут быть различимы только под действием определенного спектра. Таким образом построен принцип работы детекторов валюты, устройств для проверки натуральности денежных купюр.

Реставрация и определение подлинности картины

И в этой области находит применение УФ. Каждый художник использовал белила, содержащие в каждый эпохальный промежуток времени разные тяжелые металлы. Благодаря облучению возможно получение так называемых подмалевков, которые дают информацию о подлинности картины, а также о специфической технике, манере письма каждого художника.

Кроме того, лаковая пленка на поверхности изделий относится к чувствительным полимерам. Поэтому она способна стареть под воздействием света. Это позволяет определять возраст композиций и шедевров художественного мира.

Ультрафиолетовое излучение относится к невидимому оптическому спектру. Естественным источником ультрафиолетового излучения является солнце, на которое приходится приблизительно 5% плотности потока солнечного излучения, - это жизненно необ­ходимый фактор, оказывающий благотворное стимулирующее дей­ствие на живой организм.

Искусственные источники ультрафиолетового излучения (элек­трическая дуга при электросварке, электроплавке, плазмотроны и др.) могут стать причиной поражений кожи и зрения. Острые поражения глаз (электроофтальмия) представ­ляют собой острый конъюнктивит. За­болевание проявляется ощущением постороннего тела или песка в глазах, светобоязнью, слезотечением. К хроническим заболевани­ям относят хронический конъюнктивит, катаракту. Кожные поражения протекают в форме острых дерматитов, иногда с образованием отеков и пузырей. Могут возник­нуть общетоксические явления с повышением температуры, ознобом, головными болями. На коже после интенсивного облучения развиваются гиперпигментация и шелушение. Длительное воздействие ультрафиолетового излучения приводит к «старению» кожи, вероятности развития злокачественных новообразований.

Гигиеническое нормированиеультрафиолетового излучения осуществляется по СН 4557-88, которые устанавливают допустимые плотности потока излучения в зависимости от длины волн при условии защиты органов зрения и кожи.



Допустимая интенсивность облучения работающих при
незащищенных участках поверхности кожи не более 0,2 м 2 (лицо,
шея, кисти рук) общей продолжительностью воздействия излучения 50% рабочей смены и длительности однократного облучения
свыше 5 мин не должно превышать 10 Вт/м 2 для области 400-280 нм и
0,01 Вт/м 2 - для области 315-280 нм.

При использовании специальной одежды и средств защиты лица
и рук, не пропускающих излучение, допустимая интенсивность
облучения не должна превышать 1 Вт/м 2 .

К основным методам защитыот ультрафиолетового излучения относят экраны, средства индивидуальной защиты (одежда, очки), защитные кремы.

Инфракрасное излучение представляет собой невидимую часть оптического электромагнитного спектра, энергия которого при поглощении в биологической ткани вызывает тепловой эффект. Источникими инфракрасного излучения могут быть плавильные печи, расплавленный металл, нагретые детали и заготовки, различные виды сварки и др.

Наиболее поражаемые органы: кожный покров и органы зре­ния. При остром облучении кожи возможны ожоги, резкое расши­рение капилляров, усиление пигментации кожи; при хронических облучениях изменение пигментации может быть стойким, напри­мер эритемоподобный (красный) цвет лица у рабочих-стеклоду­вов, сталеваров.

При воздействии на зрение могут отмечаться помутнение и ожог роговицы, инфракрасная катаракта.

Инфракрасное излучение воздействует также на обменные процессы в миокарде, водно-электролитный баланс, на состояние верхних дыхательных путей (развитие хронического ларингита, ринита, синуситов), может быть причиной теплового удара.

Нормирование инфракрасного излученияосуществляется по интенсивности допустимых интегральных потоков излучения с учетом спектраль­ного состава, размера облучаемой площади, защитных свойств спецодежды для продолжительности действия в соответствии с ГОСТ 12.1.005-88 и Санитарными правилами и нормами СН 2.2.4.548-96 «Гигиенические требования к микро­климату Производственных помещений».

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м 2 при облучении 50% поверхности тела и более, 70 Вт/м 2 - при величине облучаемой поверхности от 25 до 50% и 100 Вт/м 2 - при облучении не более 25% поверхности тела.

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло, “открытое” пламя и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Допустимая интенсивность облучения на постоянных и непостоянных местах дана в табл. 4.20.

Таблица 4.20.

Допустимая интенсивность облучения

Основные мероприятия по снижению опасности воздействия инфракрасного излучения на человека включают в себя: снижение интенсивности излучения источника; технические защитные средства; защита временем, использование средств индивидуальной защиты, лечебно-профилактические мероприятия.

Технические защитные средства подразделяются на ограждающие, теплоотражающие, теплоотводящие и теплоизолирующие экраны; герметизацию оборудования; средства вентиляции; средства автоматического дистанционного управления и контроля; сигнализацию.

При защите временем во избежание чрезмерного общего перегревания и локального повреждения (ожог) регламентируется продолжительность периодов непрерывного инфракрасного облучения человека и пауз между ними (табл. 4.21. по Р 2.2.755-99).

Таблица 4.21.

Зависимость непрерывного облучения от его интенсивности.

Вопросы к 4.4.3.

  1. Охарактеризуйте природные источники электромагнитного поля.
  2. Дайте классификацию антропогенных электромагнитных полей.

3. Расскажите о действие электромагнитного поля на человека.

4. Что такое нормирование электромагнитных полей.

5. Какие установлены допустимые уровни воздействия электромагнитных полей на рабочих местах.

6. Перечислите основные мероприятия по защите работающих от неблагоприятного влияния электромагнитных полей.

7. Какие экраны применяются для защиты от электромагнитных полей.

8. Какие применяются индивидуальные средства защиты и как определяется их эффективность.

9. Охарактеризуйте виды ионизирующего излучения.

10. Какие дозы характеризуют воздействие ионизирующего излучения.

11. Каково действие ионизирующего излучения на человека.

12. Что такое нормирование ионизирующего излучения.

13. Расскажите порядок обеспечениябезопасности при работе с ионизирующими излучениями.

14. Дайте понятие лазерного излучения.

15. Охарактеризуйте его воздействие на человека и методы защиты.

16. Дайте понятие ультрафиолетового излучения, его действия на человека и методов защиты.

17. Дайте понятие инфракрасного излучения, его действия на человека и методов защиты.

На организм.

Ультрафиолетовая радиация.

Ультрафиолетовое излучение представляет собой часть солнечной радиации с длиной волны от 10 до 400 нм.

Ультрафиолетовые лучи с длинной волны от 10 до 290 нм не дости­гают земной поверхности. Свойства ультрафиолетового излучения с раз­ной длинной волны неодинаковы. Наиболее короткие волны (от 10 до 200 нм) по своему действию приближаются к ионизирующему излучению. Эта область получила название озонирующей. Энергия ультрафиолетового излучения с длинной волны от 200 до 400 нм не достаточна для возбуж­дения атомов, здесь преобладают фотохимические реакции.

Для нас наибольшее значение имеет часть спектра от 200 до 400 нм. Эту зону делят на

область С - от 200 до 280 нм

область В - от 280 до 320 нм

область А - от 320 до 400 нм

Область С называют бактерицидной. Преимущественным действием ультрафиолетового излучения в этой области является бактерицидное действие, что широко используется для обеззараживания воды, воздуха и тд. Бактерицидным действием обладают также области В и А, но в зна­чительно меньшей степени.

Область В называется эритемной, т.к. под влиянием ультрафиоле­тового излучения этой области возникает эритема. В области В также очень выражено витаминообразующее действие. Наиболее мощным ви-таминообразующим эффектом обладает область с длинной волны от 265 до 315 нм.

Область А получила название загарной. Под воздействием ультра­фиолетового излучения этой области возникает загар - образование мела­нина, что представляет собой защитную реакцию организма.

Роль УФИ очень велика. Оно повышает тонус организма, умствен­ную и физическую работоспособность, сопротивляемость к инфекциям, стимулирует деятельность желез внутренней секреции, кроветворение.

Под действием ультрафиолетового излучения образуются витамин D, гистамин, тканевые гормоны, пигменты.

Недостаток ультрафиолетового излучения отрицательно сказывается на организме и может приводить к:

1. Рахиту у детей

2. Снижению общей иммунологической реактивности

3. Снижению умственной и физической работоспособности

4. Повышению заболеваемости

5. Нарушению обмена кальция (из-за нехватки витамина D) - остеопо-роз, остеомаляция, кариес

Не следует, однако, забывать и об отрицательном действии ультра­фиолетового излучения, которому в последнее время уделяется присталь­ное внимание.

Отрицательное действие переоблучения:

1. Обострение ряда хронических заболеваний. Поэтому загорание не может быть рекомендовано при таких заболеваниях как туберкулез, ревматизм, язва желудка и двенадцатиперстной кишки, сердечно­сосудистые заболевания, все виды опухолевых процессов

2. Доказано роль ультрафиолетового излучения в развитии рака кожи, в частности меланомы

3. Возможно возникновение дефицита некоторых ароматических амино­кислот - тирозина, фенилаланина, а также витамина С и витамина РР, которые участвуют в синтезе меланина

4. Повышается количество перекисных соединений, что ведет к избыточ­ному расходу белка и железа и образованию радиомиметиков - соеди­нений, обладающих мутагенным действием.

5. Возможно возникновение фотохимического ожога в случае, когда не успевает образоваться защитный пигмент. Фотохимический ожог ха­рактеризуется повышением температуры, головной болью, недомога­нием.

6. При избыточном действии ультрафиолетового излучения может возни­кать фотоофтальмия - конъюнктивит, сопровождающийся покрасне­нием, ощущением песка в глазах, жжением, слезотечением, светобояз­нью, иногда временной потерей зрения. Фотоофтальмия возможна не только при действии прямого, но также отраженного и рассеянного света и может наблюдаться у альпинистов, горнолыжников, электро­сварщиков, в фотариях, операционных. В производственных условиях (например, у сварщиках) при повреждении роговицы интенсивным ультрафиолетовым излучением возможно развитие катаракты.

7. Фотосенсибилизация - повышенная чувствительность к действию ультрафиолетового излучения, которая проявляется в фотоаллергиче­ских реакциях типа крапивницы, дерматитов, экземы. Для возникно­вения фотосенсибилизации, как правило, необходимо наличие как эк­зогенных, так и эндогенных факторов. К эндогенным факторам отно­сятся заболевание щитовидной, поджелудочной железы, печени, энзи-мопатии, ведущие к накоплению порфиринов, жирных кислот, били­рубина. Экзогенные факторы - различные химические агенты - гудрон, асфальт, креозотовое масло, горюче-смазочные материалы, красители (акридин, креозот).

Инфракрасное излучение.

Инфракрасное излучение представляет собой часть солнечной радиа­ции в диапозоне длин волн от 670 до 3400 нм.

Инфракрасное изучение оказывает прежде всего тепловое действие. Кроме того, в настоящее время установлен целый ряд биологических эффектов.

Тепловой эффект определяется прежде всего длинной волны. Длин­новолновая часть инфракрасного излучения (более 1400 нм) задержива­ется поверхностными слоями кожи, благодаря чему происходит их разо­грев, появляется чувство жжения. Вследствие такого эффекта длинновол­новая часть излучения называется «палящими лучами». При достаточной интенсивности излучения возможна эритема и ожог.

Коротковолновая часть излучения проникает в ткани на глубину около 3 см, в результате чего может вызывать разогрев тканей, в том числе мозговых оболочек. Именно воздействием коротковолнового ин­фракрасного излучения обусловлено такое явление как солнечный удар. Кроме того, оно вызывает перегрев и помутнение хрусталика, что ведет к развитию катаракты.

Общие реакции в ответ на действие инфракрасного излучения харак­теризуются гиперемией, повышением газообмена, усилением выделитель­ной функции почек, изменением функционального состояния нервной системы.

Вам также будет интересно:

Воспаление придатков: причины, диагностика, лечение
Беспокоят тянущие или резкие боли внизу живота, нерегулярные месячные или их отсутствие,...
Болгарский красный сладкий перец: польза и вред
Сладкий (болгарский) перец – овощная культура, выращиваемая в средних и южных широтах. Овощ...
Тушеная капуста - калорийность
Белокочанная капуста - низкокалорийный овощ, и хотя в зависимости от способа тепловой...
Снежнянский городской методический кабинет
Отдел образования – это группа структурных подразделений: Аппарат: Начальник отдела...
Для чего нужны синонимы в жизни
Русский язык сложен для иностранцев, пытающихся ее выучить, по причине изобилия слов,...