Дети, мода, аксессуары. Уход за телом. Здоровье. Красота. Интерьер

Календарь Летоисчисление астрономия

Созвездие телец в астрономии, астрологии и легендах

Правила русской орфографии и пунктуации полный академический справочник Проп правила русской орфографии и пунктуации

Внеклассное мероприятие "Адыгея – родина моя!

Самые правдивые гадания на любовь

Луна таро значение в отношениях

Шницель из свинины на сковороде

Лихорадка Эбола — симптомы, лечение, история вируса

Ученым удалось измерить уровень радиации на марсе Максимальная интенсивность солнечного излучения на поверхности марса

Биография екатерины романовны дашковой Биография дашковой екатерины романовой

Сонник: к чему снится Собирать что-то

Cонник спасать, к чему снится спасать во сне видеть

Плюшки с сахаром в виде сердечек

Со свинным рылом да в калашный ряд Минфин придумал для россиян «гарантированный пенсионный продукт»

Клод шеннон краткая биография и интересные факты

Формулы кислородсодержащих соединений. Специфические методы получения кислот. Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

Для проведения лекционного занятия

по дисциплине «Химия»

для курсантов 2 курса по специальности 280705.65 –

«Пожарная безопасность»

РАЗДЕЛ IV

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ОРГАНИЧЕСКИХ ВЕЩЕСТВ

ТЕМА 4.16

ЗАНЯТИЕ № 4.16.1-4.16.2

КИСЛОРОДСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Обсуждена на заседании ПМК

протокол №____ от «___»________2015г.

Владивосток

I. Цели и задачи

Учебные: дать определение кислородсодержащих органических соединений, обратить внимание курсантов на их многообразие и распространённость. Показать зависимость физико-химических и пожароопасных свойств кислородсодержащих органических соединений от их химического строения.

Воспитательная: воспитывать у обучаемых ответственность за подготовку к практической деятельности.

II. Расчет учебного времени

III. Литература

1. Глинка Н.Л. Общая химия. – Учебное пособие для вузов/ Под ред. А.И. Ермакова. – изд.30-е, исправленное. – М.:Интеграл-Пресс, 2010. – 728 с.

2.Свидзинская Г.Б. Лабораторные работы по органической химии: Учебное пособие. – СПб,: СПбИ ГПС МЧС Росси, 2003. – 48с.

IV. Учебно-материальное обеспечение

1. Технические средства обучения: телевизор, графопроектор, видеомагнитофон,DVD-проигрыватель, компьютерная техника, интерактивная доска.

2. Периодическая система элементов Д.И. Менделеева, демонстрационные плакаты, схемы.

V. Текст лекции

ВВОДНАЯ ЧАСТЬ (5 мин.)

Преподаватель проверяет наличие слушателей (курсантов), объявляет тему, учебные цели и вопросы занятия.

ОСНОВНАЯ ЧАСТЬ (170 мин)

Вопрос № 1. Классификация кислородсодержащих органических соединений (20 мин).

Все эти вещества (как и большинство органических веществ) в соответствии с Техническим регламентом о требованиях пожарной безопасности.Федеральный закон № 123-ФЗ относятся к веществам, которые могут образовывать взрывоопасную смесь (смесь воздуха и окислителя с горючими газами или парами ЛВЖ), которая при определенной концентрации способна взрываться (статья 2. П.4). Именно этим и определяется пожаровзрывоопасность веществ и материалов, т.е. их способность к образованию горючей среды, характеризуемая их физико-химическими свойствами и (или) поведением в условиях пожара (П.29) .

Свойства данного типа соединений обусловлены наличием функциональных групп.

Функциональная группа Название функциональной группы Класс соединения Примеры соединений
С – ОН гидроксил Спирты CH 3 – CH 2 – OH
С =O карбонил Альдегиды СН 3 – С = О ç Н
Кетоны СН 3 – С – СН 3 ll О
– С = О ç ОН карбоксил карбоновые кислоты СН 3 – С = О ç ОН
С – О – С простые эфиры СН 3 – О – СН 2 – СН 3
С – С = О ç О – С сложные эфиры С 2 Н 5 – С = О ç О – СН 3
С – О – О – С перекисные соединения СН 3 – О – О – СН 3

Несложно заметить, что все классы кислородсодержащих соединений можно рассматривать как продукты окисления углеводородов. У спиртов только одна валентность углеродного атома из четырех использована на соединение с атомом кислорода, и поэтому спирты – наименее окисленные соединения. Более окисленные соединения – альдегиды и кетоны: у них углеродный атом имеет две связи с кислородом. Наиболее окислены карбоновые кислоты, т.к. в их молекулах атом углерода использовал три своих валентности на соединение с атомом кислорода.

На карбоновых кислотах завершается процесс окисления, приводящий к образованию устойчивых к действию окислителей органических веществ:

спирт D альдегид D карбоновая кислота ® СО 2

Вопрос № 2. Спирты (40 мин)

Спирты - органические соединения, молекулы которых содержат одну или несколько гидроксильных групп (–ОН), соединенных с углеводородными радикалами.

Классификация спиртов

I. В зависимости от числа гидроксильных групп:

II. По насыщенности углеводородного радикала:

III. По характеру углеводородного радикала, связанного с ОН- группой:

Одноатомные спирты

Общая формула предельных одноатомных спиртов: С n H 2 n +1 OH .

Номенклатура

Используются два возможных названия класса спиртов: “спирты” (от лат. “ спиритус” – дух) и “алкоголи” (арабск.).

По международной номенклатуре название спиртов образуется от названия соответствующего углеводорода с добавлением суффикса ол :

СН 3 ОН метанол

С 2 Н 5 ОН этанол и т.д.

Главная цепь углеродных атомов нумеруется с того конца, ближе всего к которому расположена гидроксильная группа:

5 СН 3 – 4 СН – 3 СН 2 – 2 СН 2 – 1 СН 2 -ОН

4-метилпентанол-2

Изомерия спиртов

Строение спиртов зависит от строения радикала и положения функциональной группы, т.е. в гомологическом ряду спиртов может быть два вида изомерии: изомерия углеродного скелета и изомерия положения функциональной группы.

Кроме этого, третьим видом изомерии спиртов является межклассовая изомерия с простыми эфирами.

Так, например, для пентанолов (общая формула С 5 Н 11 ОН) характерны все 3 указанных типа изомерии:

1. Изомерия скелета

пентанол-1

СН 3 – СН – СН 2 – СН 2 –ОН

3-метилбутанол-1

СН 3 – СН 2 – СН – СН 2 –ОН

2-метилбутанол-1

СН 3 – СН – СН 2 – ОН

2,2-диметилпропанол-1

Приведенные выше изомеры пентанола, или амилового спирта, носят тривиальное название “сивушные масла”.

2. Изомерия положения гидроксильной группы

СН 3 – СН 2 – СН 2 – СН 2 – СН 2 – ОН

пентанол-1

СН 3 – СН – СН 2 – СН 2 –СН 2

пентанол-2

СН 3 – СН 2 – СН – СН 2 –СН 2

пентанол-3

3. Межклассовая изомерия

С 2 Н 5 – О – С 3 Н 7

этилпропиловый эфир

Число изомеров в ряду спиртов быстро растет: спирт с 5 атомами углерода имеет 8 изомеров, с 6 атомами углерода – 17, с 7 атомами углерода – 39, а с 10 атомами углерода – 507.

Способы получения спиртов

1. Получение метанола из синтез-газа

400 0 С, ZnO, Cr 2 O 3

СО + 2Н 2 ¾¾¾¾¾® СН 3 ОН

2. Гидролиз галогенуглеводородов (в водных растворах щелочей):

СН 3 – СН – СН 3 + КOН водный ® СН 3 – СН – СН 3 + КCl

2-хлорпропан пропанол-2

3. Гидратация алкенов. Реакция идет по правилу В.В. Марковникова. Катализатором является разбавленная Н 2 SO 4 .

СН 2 = СН 2 + НОН ® СН 3 – СН 2 - ОН

этилен этанол

СН 2 = СН – СН 3 + НОН ® СН 2 – СН – СН 3

пропен пропанол-2

4. Восстановление карбонильных соединений (альдегидов и кетонов).

При восстановлении альдегидов получаются первичные спирты:

СН 3 – СН 2 – С = О + Н 2 ® СН 3 – СН 2 – СН 2 – ОН

пропанол-1 пропаналь

При восстановлении кетонов получаются вторичные спирты:

CH 3 – C – CH 3 + Н 2 ® СН 3 – СН – СН 3

пропанон (ацетон) пропанол-2

5. Получение этанола брожением сахаристых веществ:

ферменты ферменты

С 12 Н 22 О 11 + Н 2 О ¾¾¾® 2С 6 Н 12 О 6 ¾¾¾® 4С 2 Н 5 ОН + 4СО 2

сахароза глюкоза этанол

ферменты ферменты

(С 6 Н 10 О 5) n + Н 2 О ¾¾¾® nС 6 Н 12 О 6 ¾¾¾® С 2 Н 5 ОН + СО 2

целлюлоза глюкоза этанол

Спирт, полученный брожением целлюлозы, называется гидролизным спиртом и применяется только для технических целей, т.к. содержит большое количество вредных примесей: метанола, уксусного альдегида и сивушных масел.

6. Гидролиз сложных эфиров

Н + или ОН –

СН 3 – С – О– СН 2 – СН 2 –СН 3 + Н 2 О ¾¾® СН 3 – С – ОН + ОН – СН 2 – СН 2 –СН 3

пропиловый эфир уксусной кислоты уксусная пропанол-1

(пропилэтаноат) кислота

7. Восстановление сложных эфиров

СН 3 – С – О– СН 2 – СН 2 –СН 3 ¾¾® СН 3 – СH 2 – ОН + ОН – СН 2 – СН 2 –СН 3

пропиловый эфир уксусной кислоты этанол пропанол-1

(пропилэтаноат)

Физические свойства спиртов

Предельные спирты, содержащие от 1 до 12 атомов углерода, представляют собой жидкости; от 13 до 20 атомов углерода – маслообразные (мазеобразные) вещества; более 21 атома унлерода – твердые вещества.

Низшие спирты (метанол, этанол и пропанол) имеют специфический алкогольный запах, бутанол и пентанол – сладкий удушливый запах. Спирты, содержащие более 6 атомов углерода, запаха не имеют.

В воде хорошо растворяются метиловый, этиловый и пропиловый спирты. С увеличением молекулярной массы растворимость спиртов в воде падает.

Существенно более высокая температура кипения спиртов по сравнению с углеводородами, содержащими такое же число атомов углерода (например, t кип (СН 4) = – 161 0 С, а t кип (СН 3 ОН) = 64,7 0 С) связана со способностью спиртов образовывать водородные связи, а следовательно, и способностью молекул к ассоциации.

××× Н – О ×××Н – О ×××Н – О ×××R – радикал спирта

При растворении спирта в воде также возникают водородные связи между молекулами спирта и воды. В результате этого процесса происходит выделение энергии и уменьшение объема. Так, при смешении 52 мл этанола и 48 мл воды общий объем образующегося раствора будет не 100 мл, а лишь 96,3 мл.

Пожарную опасность представляют как чистые спирты (особенно низшие), пары которых могут образовывать взрывоопасные смеси, так и водные растворы спиртов. Водные растворы этанола в воде с концентрацией спирта более 25 % и более являются легковоспламеняющимися жидкостями.

Химические свойства спиртов

Химические свойства спиртов определяются реакционной способностью гидроксильной группы и строением радикала, связанного с гидроксильной группой.

1. Реакции гидроксильного водорода R – О – Н

За счет электроотрицательности атома кислорода в молекулах спиртов имеет место частичное распределение зарядов:

Водород обладает определенной подвижностью и способен вступать в реакции замещения.

1.1. Взаимодействие со щелочными металлами – образование алкоголятов:

2СН 3 – СН – СН 3 + 2Na ® 2СН 3 – СН – СН 3 + Н 2

пропанол-2 изопропилат натрия

(натриевая соль пропанола-2)

Соли спиртов (алкоголяты) представляют собой твердые вещества. При их образовании спирты выступают как очень слабые кислоты.

Алкоголяты легко подвергаются гидролизу:

С 2 Н 5 ОNa + НОН ® С 2 Н 5 ОН + NaОН

этилат натрия

1.2. Взаимодействие с карбоновыми кислотами (реакция этерификации) - образование сложных эфиров:

Н 2 SO 4 конц.

СН 3 – СН – ОН + НО – С – СН 3 ¾¾® СН 3 – СН – О – С – СН 3 + Н 2 О

СН 3 О СН 3 О

уксусная кислота изопропилацетат

(изопропиловый эфир

уксусной кислоты)

1.3. Взаимодействие с неорганическими кислотами:

СН 3 – СН – ОН + НО –SO 2 OH ® СН 3 – СН – О – SO 2 OH + H 2 O

серная кислота изопропилсерная кислота

(изопропиловый эфир

серной ксилоты)

1.4. Межмолекулярная дегидратация – образование простых эфиров:

Н 2 SO 4 конц., t<140 0 C

СН 3 – СН – ОН + НО – СН – СН 3 ¾¾¾® СН 3 – СН – О – СН – СН 3 + Н 2 О

СН 3 СН 3 СН 3 СН 3

диизопропиловый эфир

2. Реакции гидроксильной группы R – ОН

2.1. Взаимодействие с галогеноводородами:

Н 2 SO 4 конц.

СН 3 – СН – СН 3 + HCl ¾¾® СН 3 – СН – СН 3 + H 2 O

2-хлорпропан

2.2. Взаимодействие с галогенпроизводными фосфора:

СН 3 – СН – СН 3 + РCl 5 ¾® СН 3 – СН – СН 3 + РОCl 3 + НCl

2-хлорпропан

2.3. Внутримолекулярная дегидратация – получение алкенов:

Н 2 SO 4 конц.,t>140 0 C

СН 3 – СН – СН 2 ¾¾¾® СН 3 – СН = СН 2 + Н 2 О

½ ½ пропен

При дегидратации несимметричной молекулы отщепление водорода идет преимущественно от наименее гидрогенизированного атома углерода (правило А.М. Зайцева) .

3. Реакции окисления.

3.1. Полное окисление – горение:

С 3 Н 7 ОН + 4,5О 2 ® 3СО 2 + 4Н 2 О

Частичное (неполное) окисление.

Окислителями могут быть перманганат калия КMnO 4 , смесь бихромата калия с серной кислоты K 2 Cr 2 O 7 + H 2 SO 4 , медный или платиновый катализаторы.

При окислении первичных спиртов образуются альдегиды:

СН 3 – СН 2 – СН 2 – ОН + [O] ® [СН 3 – С – ОН] ® СН 3 – СН 2 – С = О + Н 2 О

пропанол-1 пропаналь

Реакция окисления метанола при попадании этого спирта в организм – пример так называемого “ летального синтеза”. Сам метиловый спирт является относительно безвредным веществом, но в организме в результате окисления он превращается в чрезвычайно ядовитые вещества: метаналь (формальдегид) и муравьиную кислоту. В результате попадание в организм уже 10 г метанола приводит к потере зрения, а 30 г – к смерти.

Реакция спирта с оксидом меди (II) может использоваться как качественная реакция на спирты, т.к. в результате реакции меняется окраска раствора.

СН 3 – СН 2 – СН 2 – ОН + CuO ® СН 3 – СН 2 – С = О + Cu¯ + Н 2 О

пропанол-1 пропаналь

В результате частичного окисления вторичных спиртов образуются кетоны:

СН 3 – СН – СН 3 + [O] ® СН 3 – С – СН 3 + Н 2 О

пропанол-2 пропанон

Третичные спирты при таких условиях не окисляются, а при окислении в более жестких условиях происходит расщепление молекулы, и при этом образуется смесь карбоновых кислот.

Применение спиртов

Спирты используют в качестве прекрасных органических растворителей.

Метанол получают в большом объеме и используют для приготовления красителей, незамерзающих смесей, как источник для производства различных полимерных материалов (получение формальдегида). Следует помнить, что метанол сильно токсичен.

Этиловый спирт – первое органическое вещество, которое было выделено в чистом виде в 900 г. в Египте.

В настоящее время этанол – многотоннажный продукт химической промышленности. Он применяется для получения синтетического каучука, органических красителей, изготовления фармацевтических препаратов. Кроме этого, этиловый спирт используется как экологически чистое горючее. Этанол употребляется при изготовлении алкогольных напитков.

Этанол – наркотик, возбуждающе действующий на организм; его длительное и неумеренное употребление приводит к алкоголизму.

Бутиловые и амиловые спирты (пентанолы) используются в промышленности как растворители, а также для синтеза сложных эфиров. Все они обладают значительной токсичностью.

Многоатомные спирты

Многоатомные спирты содержат в своем составе две или более гидроксильных групп у разных углеродных атомов.

СН 2 – СН 2 СН 2 – СН – СН 2 СН 2 – СН – СН – СН – СН 2

ç ç ç ç ç ç ç ç ç ç

ОН ОН ОН ОН ОН ОН ОН ОН ОН ОН

этандиол-1,2 пропантриол-1,2,3 пентанпентол-1,2,3,4,5

(этиленгликоль) (глицерин) (ксилит)

Физические свойства многоатомных спиртов

Этиленгликоль (“гликоли” – общее название двухатомных спиртов) представляет собой бесцветную вязкую жидкость, хорошо растворяется в воде и во многих органических растворителях.

Глицерин – важнейший трехатомный спирт – бесцветная, густая, хорошо растворимая в воде жидкость. Глицерин известен с 1779 года после открытия его шведским химиком К Шееле.

Многоатомные спирты, содержащие 4 и более атомов углерода, представляют собой твердые вещества.

Чем больше в молекуле гидроксильных групп, тем лучше оно растворяется в воде и тем выше его температура кипения. Кроме этого, появляется сладкий вкус, причем, чем больше гидроксильных групп в веществе, тем более сладким оно является.

В качестве заменителей сахара используются такие вещества как ксилит и сорбит:

СН 2 – СН – СН – СН – СН 2 СН 2 – СН – СН – СН – СН – СН 2

ç ç ç ç ç ç ç ç ç ç ç

ОН ОН ОН ОН ОН ОН ОН ОН ОН ОН ОН

ксилит сорбит

Шестиатомный спирт “инозит” также сладкий на вкус. Инозит содержится в бобовых, почках, печени, мышцах. Инозит имеет общую формулу с глюкозой:

НО –НС СН – ОН

НО –НС СН – ОН С 6 Н 12 О 6 .

циклогексангексол

Способы получения многоатомных спиртов

1. Неполное окисление алкенов

Частичное окисление раствором перманганата калия КMnО 4 .

1.1. Окисление этилена

СН 2 = СН 2 + [O]+ НОН ® СН 2 – СН 2

этилен ½ ½

этандиол-1,2

(этиленгликоль)

1.2. Окисление пропена

СН 2 = СН – СН 3 + [O]+ НОН ® СН 2 – СН – СН 2

пропен ½ ½ ½

пропантриол-1,2,3,

(глицерин)

2. Омыление растительных и животных жиров

Глицерин получают в качестве побочного продукта в мыловаренной промышленности при переработке жиров.

СН – О – ОС – С 17 Н 35 + 3NaOH® СН – ОН + 3 С 17 Н 35 СООNa

СН 2 – О – ОС – С 17 Н 35 СН 2 – ОН

триглицерид глицерин стеарат натрия

стеариновой кислоты (мыло)

Химические свойства многоатомных спиртов

Химические свойства многоатомных спиртов во многом аналогичны свойствам одноатомных спиртов.

1. Взаимодействие с активными металлами

СН 2 – ОН СН 2 – ОNa

ç + 2Na®ç + H 2

СН 2 – ОН СН 2 – ОNa

этиленгликоль натриевая соль этиленгликоля

2. Образование сложных эфиров с минеральными кислотами

СН 2 – ОН + НО – NО 2 СН 2 – О– NО 2

СН – ОH + НО – NО 2 ® СН – О– NО 2 + 3Н 2 О

СН 2 – ОH + НО – NО 2 СН 2 – О– NО 2

глицерин азотная тринитроглицерин

Тринитроглицерин – одно из сильнейших взрывчатых веществ, взрывается от удара, сотрясения, запала, в результате саморазложения. Для практического применения с целью повышения безопасности при работе с тринитроглицерином его переводят в динамит (пропитанные тринитроглицерином пористые материалы – инфузорная земля, древесная мука и т.п.).

3. Взаимодействие с гидроксидом меди (II) – качественная реакция на глицерин

СН 2 – ОН СН 2 – О m Н / О – СН 2

2 СН – ОН + Cu(ОН) 2 ® СН – О / НО – С Н

СН 2 – ОН СН 2 – ОН НО – СН 2

диглицерат меди

(ярко-синяя окраска)

4. Дегидратация глицерина с образованием акролеина

С 3 Н 8 О 3 ® СН 2 = СН – С = О + 2Н 2 О

глицерин ç

акролеин (удушливый запах при прокаливании жиров)

5. Реакции окисления

Этиленгликоль и глицерин при взаимодействии с сильными окислителями (перманганатом калия КMnО 4 , оксидом хрома (VI) CrO 3) склонны к самовозгоранию.

5С 3 Н 8 О 3 + 14КMnО 4 + 21H 2 SO 4 ® 15CO 2 + 14MnSO 4 + 7K 2 SO 4 + 41H 2 O

Применение многоатомных спиртов

Этиленгликоль и глицерин используют для изготовления незамерзающих жидкостей – антифризов. Так, водный 50 %-ный раствор глицерина замерзает только при – 34 0 С, а раствор, составленный из 6 частей этиленгликоля и 1 части воды замерзает при температуре – 49 0 С.

Пропиленгликоль СН 3 – СН(ОН) – СН 2 – СН 2 ОН используется для получения не содержащих воду пен (такие пены более стабильны), а также является составной частью кремов для загара.

Этиленгликоль используется для получения волокна “лавсан”, а глицерин – для получения глифталевых смол.

В большом количестве глицерин используется в парфюмерной, медицинской и пищевой промышленности.

Фенолы

Фенолы – производные ароматических углеводородов, у которых гидроксильная группа ОН- присоединена непосредственно к углеродному атому бензольного кольца.

Гидроксильная группа связана с ароматическим радикалом (фенилом). p-электроны бензольного кольца вовлекают неподеленные электроны атома кислорода ОН-группы в свою систему, в результате чего водород гидроксильной группы становится более подвижным, чем в алифатических спиртах.

Физические свойства

Простейший представитель – фенол – представляет собой бесцветное кристаллическое вещество (температура плавления 42 0 С) с характерным запахом. Тривиальное название фенола – карболовая кислота.

Одноатомные фенолы в воде труднорастворимы, с увеличением числа гидроксильных групп растворимость в воде увеличивается. Фенол при температуре 60 0 С в воде растворяется неограниченно.

Все фенолы сильно ядовиты. Фенол при попадании на кожу вызывает ожоги.

Способы получения фенола

1. Получение из каменноугольной смолы

Это важнейший технический способ получения фенола. Он состоит в том, что фракции каменноугольной смолы, полученные при коксовании каменного угля, обрабатываются щелочами, а затем для нейтрализации – кислотами.

2. Получение из галогенпроизводных бензола

С 6 Н 5 Cl + NaOH конц. водн. р-р ® С 6 Н 5 ОН + NaCl

хлорбензолфенол

Химические свойства фенолов

1. Реакции с участием гидроксильного водорода С 6 Н 5 – О – Н

1.1. Взаимодействие с активными металлами

2С 6 Н 5 ОН + 2Na® 2C 6 H 5 ONa + H 2

фенол фенолят

натрия (соль)

1.2. Взаимодействие с щелочами

Фенол является более сильной кислотой, чем одноатомные спирты и поэтому в отличие от последних фенол реагирует с растворами щелочей:

С 6 Н 5 ОН + NaОН ® C 6 H 5 ONa + H 2 О

фенол фенолят

Фенол является более слабой кислотой, чем угольная кислота Н 2 СО 3 (примерно в 300 раз) или сероводородная кислота Н 2 S, поэтому феноляты разлагаются слабыми кислотами:

C 6 H 5 ONa + H 2 О + СО 2 ® С 6 Н 5 ОН + NaНСО 3

1.3. Образование простых и сложных эфиров

Н 2 SO 4 конц.

С 6 Н 5 ОН + НО – С 2 Н 5 ¾¾¾®C 6 H 5 O – С 2 Н 5 + H 2 О

2. Реакции с участием бензольного кольца

Фенол без нагревания и без катализаторов энергично вступает в реакции замещения атомов водорода, при этом почти всегда образуются тризамещенные производные

2.1. Взаимодействие с бромной водой – качественная реакция на фенол

2.2. Взаимодействие с азотной кислотой

Пикриновая кислота – желтое кристаллическое вещество. При осторожном нагревании плавится при температуре 122 0 С, а при быстром нагревании – взрывается. Соли пикриновой кислоты (пикраты) взрываются при ударе и трении.

3. Реакция поликонденсации с формальдегидом

Взаимодействие фенола с формальдегидом с образованием смолообразных продуктов было изучено еще в 1872 г. Байером. Широкое практическое применение эта реакция получила значительно позже – в 20 – 30-х годах 20 века, когда во многих странах из фенола и формальдегида стали готовить так называемые бакелиты.

4. Реакция окрашивания с хлорным железом

Все фенолы при взаимодействии с хлорным железом FeCl 3 образуют окрашенные соединения; одноатомные фенолы дают окрашивание фиолетового или синего цвета. Эта реакция может служить качественной реакцией на фенол.

Применение фенолов

Фенолы убивают многие микроорганизмы, чем пользуются в медицине, применяя фенолы и их производные как дезинфицирующие и антисептические средства. Фенол (карболовая кислота) был первым антисептическим средством, введенным в хирургию Листером в 1867 году. Антисептические свойства фенолов основаны на их способности свертывать белки.

“Фенольный коэффициент” – число, показывающее, во сколько раз антисептическое действие данного вещества больше (или меньше) действия фенола, принимаемого за единицу. Гомологи бензола – крезолы – обладают более сильным бактерицидным действием, чем сам фенол.

Фенол используют для получения фенолформальдегидных смол, красителей, пикриновой кислоты, а также из него получают лекарственные препараты, такие как салицилаты, аспирин и другие.

Одним из наиболее известных производных двухатомных фенолов является адреналин. Адреналин является гормоном, образующимся в надпочечниках, и обладает способностью сужать кровеносные сосуды. Его часто применяют в качестве кровоостанавливающего средства

Вопрос № 3. Простые эфиры спиртов (20мин)

Простыми эфирами называются органические соединения, в которых два углеводородных радикала связаны между собой атомом кислорода. Простые эфиры можно рассматривать как продукты замещения атома водорода в гидроксиле спирта радикалом:

R – O – H ® R – O – R /

Общая формула простых эфиров С n H 2 n +2 O .

Радикалы в молекуле простого эфира могут быть одинаковыми, например, в эфире СН 3 – О – СН 3 , или же разными, например, в эфире СН 3 – О – С 3 Н 7 . Эфир, имеющий различные радикалы, называется смешанным.

Номенклатура простых эфиров

Обычно эфиры называются по тем радикалам, которые входят в их состав (рациональная номенклатура).

По международной номенклатуре простые эфиры обозначают как производные углеводородов, в которых атом водорода замещен алкоксигруппой (RO –), например, метоксигруппой СН 3 О –, этоксигруппой С 2 Н 5 О – и т.д.

Изомерия простых эфиров

1. Изомерия простых эфиров определяется изомерией радикалов, связанных с кислородом.

СН 3 – О – СН 2 – СН 2 – СН 3 метилпропиловый эфир

С 2 Н 5 – О – С 2 Н 5 диэтиловый эфир

СН 3 - О – СН – СН 3 метилизопропиловый эфир

2. Межклассовыми изомерами простых эфиров являются одноатомные спирты.

СН 3 – СН 2 – СН 2 – СН 2 – ОН

бутанол-1

Физические свойства простых эфиров

Диметиловый и метилэтиловый эфиры представляют собой при обычных условиях газообразные вещества.

Начиная с диэтилового эфира, вещества этого класса представляют собой бесцветные, легкоподвижные жидкости с характерным запахом.

Простые эфиры легче воды и почти не растворяются в ней. Из-за отсутствия водородных связей между молекулами, простые эфиры кипят при более низкой температуре, чем соответствующие спирты.

В органических растворителях простые эфиры растворяются легко и сами растворяют многие вещества.

Наиболее распространенным соединением этого класса является диэтиловый эфир С 2 Н 5 – О – С 2 Н 5 , впервые полученный в XVI веке Кордусом. Очень часто его называют “серный эфир”. Это название, полученное в XVIII веке, связано со способом получения эфира: взаимодействием этилового спирта с серной кислотой.

Диэтиловый эфир – бесцветная, очень подвижная жидкость с сильным характерным запахом. Это вещество чрезвычайно взрывопожароопасно. Температура кипения диэтилового эфира 34,6 0 С, температура замерзания 117 0 С. Эфир плохо растворим в воде (1 объем эфира растворяется в 10 объемах воды). Эфир легче воды (плотность 714 г/л). Диэтиловый эфир склонен к электризации: разряды статического электричества могут возникнуть в момент переливания эфира и послужить причиной его воспламенения. Пары диэтилового эфира в 2,5 раза тяжелее воздуха и образует с ним взрывоопасные смеси. Концентрационные пределы распространения пламени (КПР) 1,7 – 49 %.

Пары эфира могут распространяться на значительные расстояния, сохраняя при этом способность к горению. Основная мера предосторожности при работе с эфиром – это удаление от открытого огня и сильно нагретых приборов и поверхностей, включенных электрических плиток.

Температура вспышки эфира – 45 0 С, температура самовоспламенения 164 0 С. При горении эфир горит синеватым пламенем с выделением большого количества тепла. Пламя эфира быстро увеличивается, т.к. верхний слой его быстро нагревается до температуры кипения. При горении эфир нагревается в глубину. Скорость роста нагретого слоя составляет 45 см/час, а скорость выгорания его со свободной поверхности 30 см/час.

При контакте с сильными окислителями (KMnO 4 , CrO 3 , галогены) диэтиловый эфир самовозгорается. Кроме этого, при контакте с кислородом воздуха диэтиловый эфир может образовывать перекисные соединения, которые являются чрезвычайно взрывоопасными веществами.

Способы получения простых эфиров

1. Межмолекулярная дегидратация спиртов

H 2 SO 4 конц.

С 2 Н 5 – ОН + НО – С 2 Н 5 ¾¾¾® С 2 Н 5 – О – С 2 Н 5 + Н 2 О

этанол диэтиловый эфир

Химические свойства простых эфиров

1. Простые эфиры – довольно инертные вещества, не склонные к химическим реакциям. Однако при действии концентрированных кислот они разлагаются

С 2 Н 5 – О – С 2 Н 5 + НI конц. ® С 2 Н 5 ОН + С 2 Н 5 I

диэтиловый этанол иодэтан

2. Реакции окисления

2.1.Полное окисление - горение:

С 4 Н 10 О + 6(О 2 + 3,76N 2) ® 4СО 2 + 5Н 2 О + 6 × 3,76N 2

2.2. Неполное окисление

При стоянии, особенно на свету, эфир под влиянием кислорода окисляется и разлагается с образованием ядовитых и взрывоопасных продуктов– перекисных соединений и продуктов их дальнейшего разложения.

О – С – СН 3

С 2 Н 5 – О – С 2 Н 5 + 3[О] ® ½

О – С – СН 3

гидроперекись оксиэтила

Применение простых эфиров

Диэтиловый эфир является хорошим органическим растворителем. Его применяют для извлечения различных полезных веществ из растений, для чистки тканей, при изготовлении порохов и искусственного волокна.

В медицине эфир применяется для общего наркоза. Впервые с этой целью при проведении хирургической операции эфир был использован американским врачом Джексоном в 1842 году. За введение этого метода горячо боролся русский хирург Н.И. Пирогов.

Вопрос № 4. Карбонильные соединения (30 мин)

Альдегиды и кетоны – производные углеводородов, в молекулах которых содержится одна или более карбонильных групп С = O.

Альдегиды Кетоны
Альдегиды содержат карбонильную группу, связанную с одним радикалом и с одним атомом водорода – С = О ½ Н Кетоны содержат карбонильную группу, связанную с двумя радикалами – С – ll О
Общая формула карбонильных соединений С n Н 2 n О
Номенклатура карбонильных соединений
Название “альдегиды” произошло от общего способа получения этих соединений: дегидрирование спирта, т.е. отнятие у него водорода. По номенклатуре ИЮПАК название альдегидов производят от названий соответствующих углеводородов, добавляя к ним суффикс “аль”. Нумерацию цепи начинают от альдегидной группы. По номенклатуре ИЮПАК название кетонов производят от названий соответствующих углеводородов, добавляя к ним суффикс “он”. Нумерацию ведут от ближайшего к карбонилу конца цепи. Первый представитель ряда кетонов содержит 3 атома углерода.
Н – С = О метаналь ½ (муравьиный альдегид, Н формальдегид) СН 3 – С = О этаналь ½ (уксусный альдегид, Н ацетальдегид) 5 4 3 2 1 СН 3 – СН – СН 2 – СН 2 – С = О ½ ½ СН 3 Н 4-метилпентаналь СН 3 – С – СН 3 пропанон ll (ацетон) О 6 5 4 3 2 1 СН 3 – СН 2 – СН – СН 2 – С – СН 3 ½ ll СН 3 О 4-метилгексанон-2
Изомерия непредельных соединений
1. Изомерия углеродной цепи
СН 3 – СН 2 – СН 2 – СН 2 – СН 2 – С = О ½ гексаналь Н СН 3 – СН – СН – С = О ½ ½ ½ СН 3 СН 3 Н 2,3-диметилбутаналь СН 3 – СН 2 – СН 2 – СН 2 – СН 2 – С – СН 3 ll гептанон-2 О СН 3 – СН 2 – СН – С – СН 3 ½ ll С 2 Н 5 О 3-этилпентанон-2
2. Изомерия положения карбонильной группы
СН 3 – СН 2 – СН 2 – СН 2 – СН 2 – С – СН 3 ll гептанон-2 О СН 3 – СН 2 – СН 2 – С – СН 2 – СН 2 – СН 3 ll гептанон-4 О
3. Альдегиды и кетоны являются межклассовыми изомерами
Физические свойства карбонильных соединений
Формальдегид (метаналь) при обычных условиях представляет собой газ с резким неприятным “острым” запахом, хорошо растворимый в воде. 40%-ный раствор формальдегида в воде называется формалином. Уксусный альдегид (этаналь) представляет собой летучую, легковоспламеняющуюся жидкость. Температура кипения его составляет 20,2 0 С, температура вспышки -33 0 С. В больших концентрациях он обладает неприятным удушливым запахом; в малых концентрациях имеет приятный запах яблок (в которых он и содержится в небольшом количестве). Уксусный альдегид хорошо растворим в воде, спирте, многих других органических растворителях. Простейший кетон – пропанон (ацетон) – легковоспламеняющаяся жидкость. Последующие представители также являются жидкостями. Высшие алифатические (> 10 атомов С), а также ароматические кетоны – твердые вещества. Ацетон имеет низкую температуру кипения 56,1 0 С и температуру вспышки -20 0 С. Простейшие кетоны смешиваются с водой. Опасность представляют и водные растворы ацетона. Так, 10 %-ный раствор его в оде имеет температуру вспышки 11 0 С. Все кетоны хорошо растворимы в спирте и эфире. Простейшие кетоны обладают характерным запахом; средние гомологи имеют довольно приятный запах, напоминающий запах мяты.
Способы получения карбонильных соединений
1. Реакции частичного (неполного) окисления спиртов
Первичные спирты при окислении дают альдегиды: СН 3 – СН 2 – СН 2 – ОН + [O]® Н 2 О + пропанол-1 + СН 3 – СН 2 – С = О пропаналь ½ Н Вторичные спирты при окислении образуют кетоны: СН 3 – СН – СН 2 –СН 3 + [O] ® Н 2 О + ½ ОН + СН 3 – С – СН 2 – СН 3 бутанол-2 ll О бутанон-2
2. Гидратация алкинов (реакция Кучерова)
Альдегид получается только при гидратации ацетилена, во всех остальных случаях образуются кетоны. Hg 2+ СН º СН + НОН ® СН 3 – С = О + Н 2 О ацетилен ½ Н этаналь Hg 2+ СН º С – СН 2 – СН 3 + НОН ® Н 2 О + бутин-1 + СН 3 – С – СН 2 – СН 3 ll О бутанон-2
3. Гидролиз дигалогенпроизводных. (Атомы галогенов расположены у одного и того же атома углерода). Реакция протекает в водном растворе щелочи.
Cl ½ СН 3 – СН 2 – СН + 2КОН водный ® Cl 1,1-дихлорпропан ® 2КCl + СН 3 – СН 2 – С = О + Н 2 О ½ Н пропаналь Cl ½ СН 3 – СН 2 – С – СН 3 + 2КОН водный ® ½ Cl 2,2-дихлорбутан ® 2КCl + СН 3 – СН 2 – С – СН 3 + Н 2 О ll О бутанон-2
4. Восстановление карбоновых кислот
СН 3 – СН 2 – С = О + H 2 ® ½ ОН пропановая кислота ® Н 2 О + СН 3 – СН 2 – С = О ½ Н пропаналь
Химические свойства карбонильных соединений
По химической активности альдегиды превосходят кетоны и являются более реакционноспособными. Радикалы, связанные с карбонильной группой, обладают так называемым положительным индукционным эффектом: они повышают электронную плотность связи радикала с другими группами, т.е. как бы гасят положительный заряд углеродного атома карбонила. Вследствие этого карбонильные соединения по убыли их химической активности можно расположить в следующий ряд: Н – С d + – Н > Н 3 С ® С d + – Н > Н 3 С ® С d + СН 3 II II II О d - О d - О d - (прямые стрелки в формулах показывают сдвиг электронов, гашение положительно заряженного атома углерода карбонильной группы).
1. Реакции присоединения по месту разрыва двойной связи >C = О. Реакции восстановления.
СН 3 – СН 2 – С = О + Н 2 ® ½ Н пропаналь ® СН 3 – СН 2 – СН 2 – ОН (пропанол-1) CH 3 – CН 2 – С – CH 3 + Н 2 ® II О бутанон-2 ® CH 3 – CН 2 – СН – CH 3 ½ ОН бутанол-2
2. Реакции окисления
2.1. Полное окисление – горение
С 3 Н 6 О + 4О 2 ® 3СО 2 + 3Н 2 О С 4 Н 8 О + 5,5О 2 ® 4СО 2 + 4Н 2 О
2.2. Частичное (неполное) окисление
Реакции окисления оксидом серебра ("реакция серебряного зеркала"), гидроксидом меди (II) – качественные реакции на альдегиды. NH 3 , t СН 3 – СН 2 – С = О + Ag 2 O ¾¾® ½ Н пропаналь ¾¾®2Ag¯ + СН 3 – СН 2 – С = О ½ ОН пропановая кислота В этом случае выпадает осадок серебра. СН 3 – СН 2 – С = О + 2Cu(OH) 2 ® ½ Н пропаналь ® Cu 2 O + СН 3 – СН 2 – С = О + H 2 O ½ ОН пропановая кислота Голубой осадок гидроксида меди превращается в красный осадок закиси меди. Окисление кетонов протекает очень трудно только сильными окислителями (хромовая смесь, КMnO 4), в результате образуется смесь кислот: t CH 3 – CН 2 – С – CH 3 + [O] ® II O бутанон-2 ® 2CH 3 – C = O ½ OH уксусная (этановая) кислота или ® CH 3 – СН 2 – C = O + Н – С = О ½ ½ ОН ОН пропановая муравьиная кислота (метановая) кислота
При контакте с сильными окислителями (КMnO 4 , CrO 3 , HNO 3 конц., Н 2 SO 4 конц.) альдегиды и кетоны самовозгораются.
3. Реакции, обусловленные превращениями в радикалах. Замещение водорода в радикалах на галогены
СН 3 – С = О + Cl 2 ® HCl + CH 2 Cl – С = О ½ ½ H Н этаналь хлоруксусный альдегид При хлорировании метаналя образуется ядовитый газ фосген: Н – С = О + 2Сl 2 ®Cl – C = O + 2НCl ½½ HCl фосген СН 3 – С – СН 3 + Br 2 ® HBr + CH 3 – C – CH 2 Br II II O O ацетон бромацетон Бромацетон и хлорацетон являются слезоточивыми боевыми отравляющими веществами (лакриматорами ).
Применение карбонильных соединений
Формальдегид применяют в промышленности для производства фенолформальдегидных и карбамидных полимеров, органических красителей, клеев, лаков, в кожевенной промышленности. Формальдегид в виде водного раствора (формалин) используется в медицинской практике. Ацетальдегид является исходным веществом для производства уксусной кислоты, полимерных материалов, лекарственных средств, эфиров. Ацетон очень хорошо растворяет ряд органических веществ (например, лаки, нитроцеллюлозу и др.) и поэтому в больших количествах применяется как растворитель (производство бездымного пороха, искусственного шелка, красок, кинопленки). Ацетон служит сырьем для получения синтетического каучука. Чистый ацетон используют при экстрагировании пищевых продуктов, витаминов и лекарств, а также в качестве растворителя для хранения и перевозки ацетилена.

Вопрос № 5. Карбоновые кислоты (30 мин)

Карбоновыми кислотами называются производные углеводородов, которые содержат одну или несколько карбоксильных групп – С = О.

Карбоксильная группа представляет собой сочетание карбонильной и гидроксильной групп: – С = О + – С – ® – С = О.

карбо нил + гидроксил ® карбоксил.

Карбоновые кислоты – продукты окисления альдегидов, которые, в свою очередь, являются продуктами окисления спиртов. На кислотах завершается процесс окисления (с сохранением углеродного скелета) в следующем ряду:

углеводород ® спирт ® альдегид ® карбоновая кислота.


Похожая информация.


В материале рассмотрена класиификация кислородсодержащих органических веществ. Разобрны вопросы гомологии, изомерии и номенклатуры веществ. Презнтация насыщена заданиями по данным вопросам. Закрепление материала предлагается в тестового упражнения на соответствие.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Задачи урока: познакомиться с классификацией кислородсодержащих органических соединений; построение гомологических рядов веществ; выявление возможных видов изомерии; построение структурных формул изомеров веществ, номенклатура веществ.

Классификация веществ С х Н у О z карбоновые кислоты альдегиды кетоны эфиры спирты фенолы одно- атомные -много R – OH R–(OH) n простые сложные OH = R – C - O OH = R – C - O H - овая кислота -аль R – C – R || O -он R – O – R = R – C - O O – R - ол - n ол

Гомологический ряд СН 3 – ОН С 2 Н 5 – ОН С 3 Н 7 – ОН С 4 Н 9 – ОН С 5 Н 11 – ОН метан ол этан ол пропан ол-1 бутан ол-1 пентан ол-1 Спирты С n H 2n+2 O

Карбоновые кислоты = Н – C - O OH = СН 3 – C - O OH = СН 3 – СН 2 – C - O OH метан овая кислота (муравьиная) этан овая кислота (уксусная) пропан овая кислота (пропионовая) С n H 2n O 2

Альдегиды = Н – C - O H = СН 3 – C - O H = СН 3 – СН 2 – C - O H метан аль муравьиный альдегид (формальдегид) этан аль уксусный альдегид (ацетальдегид) пропан аль пропионовый альдегид С n H 2n O

Кетоны СН 3 – C – СН 3 || O СН 3 – СН 2 – C – СН 3 || O СН 3 – СН 2 – СН 2 – C – СН 3 || O пропан он (ацетон) бутан он пентан он-2 С n H 2n O

Простые эфиры СН 3 – О –СН 3 С 2 Н 5 – О –СН 3 С 2 Н 5 – О –С 2 Н 5 С 3 Н 7 – О –С 2 Н 5 С 3 Н 7 – О –С 3 Н 7 диметил овый эфир метиэтил овый эфир диэтил овый эфир этилпропил овый эфир дипропил овый эфир С n H 2n+2 O Вывод: простые эфиры – производные предельных одноатомных спиртов.

Сложные эфиры = Н – C - O O – СН 3 = СН 3 – C - O O – С Н 3 = СН 3 – СН 2 – C - O O – СН 3 метиловый эфир муравьиной кислоты (метил формиат) метиловый эфир уксусной кислоты (метил ацетат) метиловый эфир пропионовой кислоты С n H 2n O 2 Вывод: сложные эфиры – производные карбоновых кислот и спиртов.

спирты эфиры кетоны альдегиды карбоновые кислоты Изомерия и номенклатура изомерия углеродного скелета межклассовая (сложные эфиры) углеродного скелета межклассовая (кетоны) углеродного скелета положения f- группы (-С =О) межклассовая (альдегиды) углеродного скелета положения f- группы (-ОН) межклассовая (простые эфиры) углеродного скелета межклассовая

Составление формул изомеров. Номенклатура веществ. Задание: составьте структурные формулы возможных изомеров для веществ состава С 4 Н 10 О; С 4 Н 8 О 2 ; С 4 Н 8 О. К каким классам они принадлежат? Назовите все вещества по систематической номенклатуре. С 4 Н 10 О С 4 Н 8 О 2 С 4 Н 8 О С n H 2n+2 O С n H 2n O 2 С n H 2n O спирты и простые эфиры карбоновые кислоты и сложные эфиры альдегиды и кетоны

СН 3 – СН 2 – СН – СН 3 | ОН СН 3 | СН 3 – С – СН 3 | ОН СН 3 – О – СН 2 – СН 2 – СН 3 СН 3 – СН 2 – О – СН 2 – СН 3 бутанол-1 2-метилпропанол-1 бутанол-2 2-метилпропанол-2 метилпропиловый эфир диэтиловый эфир I спирты II спирт III спирт

СН 3 – СН 2 – СН 2 – C - O OH = СН 3 – СН – C - O OH | СН3 = СН 3 – СН 2 – C - O O – СН 3 = СН 3 – C - O O – СН 2 – СН 3 бутановая кислота 2-метилпропановая кислота метиловый эфир пропионовой к-ты этиловый эфир уксусной кислоты

СН 3 – СН 2 – СН 2 – C - O H = СН 3 – СН – C - O H | СН3 СН 3 – СН 2 – C – СН 3 || O бутаналь 2-метилпропаналь бутанон-2

Проверь себя! 1. Установите соответствие: общая формула класс вещество R – COOH R – O – R R – COH R – OH R – COOR 1 R – C – R || O сл. эфиры спирты карб. к-ты кетоны альдегиды пр. эфиры а) С 5 Н 11 –ОН б) С 6 Н 13 –СОН в) С 4 Н 9 –О–СН 3 г) С 5 Н 11 –СООН д) СН 3 –СО–СН 3 е) СН 3 –СООС 2 Н 5 2. Назовите вещества по систематической номенклатуре.

Проверь себя! I II III IV V VI 3 6 5 2 1 4 Г В Б А Е Д

Домашнее задание Параграф (17-21) – 1 и 2 части упр. 1,2,4,5 стр. 153-154 2 стр. 174 Урок окончен!


Спирты – производные углеводородов, содержащие функциональную группу ОН (гидроксил). Спирты, в которых имеется одна группа ОН, называются одноатомными, а спирты с несколькими группами ОН - многоатомными.

Названия некоторых распространенных спиртов приведены в табл. 9.

По строению различают спирты первичные, вторичные и третичные, в зависимости от того, при каком атоме углерода (первичном, вторичном или третичном) находится группа ОН:

Одноатомные спирты – бесцветные жидкости (до Cl 2 Н 25 ОН), растворимые в воде. Простейший спирт - метанол СН 3 ОН чрезвычайно ядовит. С увеличением молярной массы температура кипения спиртов повышается.




Молекулы жидких одноатомных спиртов ROH ассоциированы за счет водородных связей:



(эти связи аналогичны водородным связям в чистой воде).

При растворении в воде молекулы ROH образуют водородные связи с молекулами воды:



Водные растворы спиртов ROH имеют нейтральную среду; другими словами, спирты практически не диссоциируют в водном растворе ни по кислотному, ни по основному типу.

Химические свойства одноатомных спиртов обусловлены присутствием в них функциональной группы ОН.

Водород группы ОН в спиртах может замещаться на металл:



Этанолаты и производные других спиртов (алкоголяты) легко гидролизуются:



Группу ОН в спиртах можно заместить на Cl или Br:



При действии на спирты водоотнимающих средств, например концентрированной H 2 SO 4 , происходит межмолекулярная дегидратация:



Продукт реакции - диэтиловый эфир (С 2 Н 5) 2 O – относится к классу простых эфиров .

В более жестких условиях дегидратация становится внутримолекулярной и образуется соответствующий алкен:




Многоатомные спирты рассмотрим на примере простейших представителей двух– и трехатомных спиртов:



При комнатной температуре они – бесцветные вязкие жидкости с температурами кипения 198 и 290 °C соответственно, неограниченно смешиваются с водой. Этиленгликоль ядовит.

Химические свойства многоатомных спиртов подобны свойствам спиртов ROH. Так, в этиленгликоле одну или две группы ОН можно заместить на галоген:




Кислотные свойства многоатомных спиртов проявляются в том, что (в отличие от одноатомных спиртов) водород группы ОН замещается на металл под действием не только металлов, но и гидроксидов металлов:




(стрелками в формуле гликолята меди показано образование ковалентных связей медь – кислород по донорно-акцепторному механизму).

Аналогично реагирует с гидроксидом меди (II) глицерин:



Гликолят и глицерат меди (II), имеющие ярко-синюю окраску, позволяют качественно обнаруживать многоатомные спирты.

Получение одноатомных спиртов в промышленности – гидратация алкенов в присутствии катализаторов (H 2 SO 4 , Al 2 O 3), причем присоединение воды к несимметричным алкенам происходит по правилу Марковникова:



(способ получения вторичного спирта), или присоединение к алкенам СО и Н 2 в присутствии кобальтового катализатора (процесс называется гидрофоржилирование):



(способ получения первичного спирта ).

В лаборатории (а иногда и в промышленности ) спирты получают взаимодействием галогенпроизводных углеводородов с водой или водным раствором щелочи при нагревании:




Этанол С 2 Н 5 ОН образуется также при спиртовом брожении сахаристых веществ, например глюкозы:



Этиленгликоль получают в двухстадийном процессе:

а) окисление этилена:



б) гидратация этиленоксида:



Глицерин ранее получали омылением жиров (см. 20.3), современный трехстадийный способ – постепенное окисление пропена (приведена только схема процесса):



Спирты используют как сырье в органическом синтезе, в качестве растворителей (для лаков, красок и т. п.), а также в бумажной, полиграфической, парфюмерной, фармакологической и пищевой промышленности.

Простые эфиры – класс органических соединений, содержащих мостиковый атом кислорода – О– между двумя углеводородными радикалами: R – О-R". Самый известный и широко применяемый простой эфир – диэтиловый эфир С 2 Н 5 -О – С 2 Н 5 . Бесцветная, легкоподвижная жидкость с характерным («эфирным») запахом, в лабораторной практике его называют просто эфиром. Почти не смешивается с водой, t кип = 34,51 °C. Пар эфира воспламеняется на воздухе. Получают диэтиловый эфир при межмолекулярной дегидратации этанола (см. выше), основное применение – растворитель.

Фенолы – это спирты, в которых группа ОН непосредственно связана с бензольным кольцом. Простейший представитель - фенол С 6 Н 5 -ОН. Белые (розовеющие на свету) кристаллы с сильным запахом, t пл = 41 °C. Вызывает ожоги кожи, ядовит.

Для фенола характерна значительно большая кислотность, чем для ациклических спиртов. Вследствие этого фенол в водном растворе легко реагирует с гидроксидом натрия:



Отсюда тривиальное название фенола - карболовая кислота.

Отметим, что группа ОН в феноле никогда не замещается ни на какие другие группы или атомы, но делает более подвижными атомы водорода бензольного кольца. Так, фенол легко реагирует с бромом в воде и азотной кислотой, образуя соответственно 2,4,6-трибромфенол (I) и 2,4,6-тринитрофенол (II, традиционное название - пикриновая кислота):



Фенол в промышленности получают нагреванием хлорбензола с раствором гидроксида натрия под давлением при 250 °C:



Фенол применяют в качестве сырья для производства пластмасс и смол, полупродуктов для лакокрасочной и фармацевтической промышленности, как дезинфицирующее средство.

10.2. Альдегиды и кетоны

Альдегиды и кетоны – это производные углеводородов, содержащие функциональную карбонильную группу СО . В альдегидах карбонильная группа связана с атомом водорода и одним радикалом, а в кетонах с двумя радикалами.

Общие формулы:




Названия распространенных веществ этих классов приведены в табл. 10.

Метаналь – бесцветный газ с резким удушающим запахом, хорошо растворим в воде (традиционное название 40 %-ного раствора- формалин), ядовит. Последующие члены гомологического ряда альдегидов – жидкости и твердые вещества.

Простейший кетон – пропанон-2, более известный под названием ацетон, при комнатной температуре – бесцветная жидкость с фруктовым запахом, t кип = 56,24 °C. Хорошо смешивается с водой.

Химические свойства альдегидов и кетонов обусловлены присутствием в них карбонильной группы СО; они легко вступают в реакции присоединения, окисления и конденсации.




В результате присоединения водорода к альдегидам образуются первичные спирты:



При восстановлении водородом кетонов образуются вторичные спирты:



Реакция присоединения гидросульфита натрия используется для выделения и очистки альдегидов, так как продукт реакции малорастворим в воде:



(действием разбавленных кислот такие продукты превращаются в альдегиды).

Окисление альдегидов проходит легко под действием кислорода воздуха (продукты – соответствующие карбоновые кислоты). Кетоны сравнительно устойчивы к окислению.

Альдегиды способны участвовать в реакциях конденсации . Так, конденсация формальдегида с фенолом протекает в две стадии. Вначале образуется промежуточный продукт, являющийся фенолом и спиртом одновременно:



Затем промежуточный продукт реагирует с другой молекулой фенола, и в результате получается продукт поликонденсации - фенолформальдегидная смола:




Качественная реакция на альдегидную группу – реакция «серебряного зеркала», т. е. окисление группы С(Н)O с помощью оксида серебра (I) в присутствии гидрата аммиака:




Аналогично протекает реакция с Cu(ОН) 2 , при нагревании появляется красный осадок оксида меди (I) Cu 2 O.

Получение : общий способ для альдегидов и кетонов – дегидрирование (окисление) спиртов. При дегидрировании первичных спиртов получают альдегиды , а при дегидрировании вторичных спиртов – кетоны . Обычно дегидрирование протекает при нагревании (300 °C) над мелкораздробленной медью:



При окислении первичных спиртов сильными окислителями (перманганат калия, дихромат калия в кислотной среде) процесс трудно остановить на стадии получения альдегидов; альдегиды легко окисляются до соответствующих кислот:



Более подходящим окислителем является оксид меди (II):



Ацетальдегид в промышленности получают по реакции Кучерова (см. 19.3).

Наибольшее применение из альдегидов имеют метаналь и этаналь. Метаналь используют для производства пластмасс (фенопластов), взрывчатых веществ, лаков, красок, лекарств. Этаналь – важнейший полупродукт при синтезе уксусной кислоты и бутадиена (производство синтетического каучука). Простейший кетон – ацетон используют в качестве растворителя различных лаков, ацетатов целлюлозы, в производстве кинофотопленки и взрывчатых веществ.

10.3. Карбоновые кислоты. Сложные эфиры. Жиры

Карбоновые кислоты – это производные углеводородов, содержащие функциональную группу СООН (карбоксил).

Формулы и названия некоторых распространенных карбоновых кислот приведены в табл. 11.

Традиционные названия кислот НСООН (муравьиная), СН 3 СООН (уксусная), С 6 Н 5 СООН (бензойная) и (СООН) 2 (щавелевая) рекомендуется использовать вместо их систематических названий.

Формулы и названия кислотных остатков приведены в табл. 12.

Для составления названий солей этих карбоновых кислот (а также их сложных эфиров, см. ниже) обычно используются традиционные названия, например:








Низшие карбоновые кислоты – бесцветные жидкости с резким запахом. При увеличении молярной массы температура кипения возрастает.

Карбоновые кислоты обнаружены в природе:




Простейшие карбоновые кислоты растворимы в воде, обратимо диссоциируют в водном растворе с образованием катионов водорода:



и проявляют общие свойства кислот:




Важное практическое значение имеет взаимодействие карбоновых кислот со спиртами (подробнее см. ниже):



Отметим, что кислота НСООН вступает в реакцию «серебряного зеркала» как альдегиды:



и разлагается под действием водоотнимающих реактивов:



Получение:

Окисление альдегидов:



Окисление углеводородов:

Кроме того, муравьиную кислоту получают по схеме:



а уксусную кислоту – по реакции:



Применяют муравьиную кислоту как протраву при крашении шерсти, консервант фруктовых соков, отбеливатель, дезинфекционный препарат. Уксусную кислоту используют как сырье в промышленном синтезе красителей, медикаментов, ацетатного волокна, негорючей кинопленки, органического стекла. Натриевые и калиевые соли высших карбоновых кислот – основные компоненты мыла.

Сложные эфиры – продукты обменного взаимодействия карбоновых кислот со спиртами. Это взаимодействие называется реакцией этерификации:




Механизм реакции этерификации был установлен при использовании спирта, меченного изотопом 18 O; этот кислород после реакции оказался в составе эфира (а не воды):



Следовательно, в отличие от реакции нейтрализации неорганической кислоты щелочью (Н + + ОН - = Н 2 O), в реакции этерификации карбоновая кислота всегда отдает группу ОН , спирт – атом Н (образуется вода). Реакция этерификации обратима; она лучше протекает в кислотной среде, обратная реакция (гидролиз, омыление) – в щелочной среде.

Формулы и названия распространенных сложных эфиров приведены в табл. 13.




Среди сложных эфиров есть бесцветные низкокипящие горючие жидкости с фруктовым запахом, например:



Используются сложные эфиры как растворители для лаков, красок и нитратов целлюлозы, носители фруктовых ароматов в пищевой промышленности.

Сложные эфиры трехатомного спирта – глицерина и высших карбоновых кислот (в общем виде RCOOH), например с формулами и названиями:




носят названия жиров. Примером жира будет смешанный сложный эфир глицерина и этих кислот:




Чем выше содержание остатков олеиновой кислоты (или других ненасыщенных кислот), тем ниже температура плавления жира. Жидкие при комнатной температуре жиры называются маслами. Путем гидрогенизации, т. е. присоединения водорода по двойной связи, масла превращают в твердые жиры (например, растительное масло – в маргарин). Реакция этерификации (образования жира) обратима:




Прямая реакция лучше идет в кислотной среде, обратная реакция – гидролиз, или омыление, жира – в щелочной среде; при пищеварении жир омыляется (расщепляется) с помощью ферментов.

10.4. Углеводы

Углеводы (сахара ) – важнейшие природные соединения, состоящие из углерода, водорода и кислорода. Углеводы подразделяются на моносахариды, дисахариды и полисахариды. Моносахариды не подвергаются гидролизу, а остальные углеводы при кипячении в присутствии кислот расщепляются до моносахаридов.

Моносахариды (и все другие углеводы) относятся к полифункциональным соединениям. В молекуле моносахарида имеются функциональные группы разных типов: группы ОН (спиртовая функция) и группы СО (альдегидная или кетонная функция). Поэтому различают альдозы (альдегидоспирты, спиртоальдегиды) и кетозы (кетоноспирты, спиртокетоны).

Важнейший представитель альдоз - глюкоза:



а представитель кетоз - фруктоза:



Глюкоза (виноградный сахар) и фруктоза (фруктовый сахар) являются структурными изомерами, их молекулярная формула С 6 Н 12 O 6 .

Глюкозу можно отличить от фруктозы так же, как любой альдегид от кетона, – по реакции «серебряного зеркала» в аммиачном растворе Ag 2 O:




Этерификация глюкозы и фруктозы (например, уксусной кислотой) приводит к образованию сложных эфиров по всем пяти группам ОН (заменяются на ОСОСН 3).

Однако не все реакции, характерные для альдегидов, протекают с глюкозой; например, не идет реакция присоединения с участием гидросульфита натрия. Причина в том, что молекула глюкозы может существовать в трех изомерных формах, из которых две формы (? и?) – циклические . В растворе все три формы находятся в состоянии равновесия, причем открытая (альдегидная) форма, приведенная выше, содержится в наименьшем количестве:



Циклические формы глюкозы не содержат альдегидной группы. Они отличаются друг от друга только пространственным расположением атома Н и группы ОН у атома углерода C 1 (рядом с кислородом в цикле):




Дисахариды образуются из двух молекул моносахаридов путем межмолекулярной дегидратации. Так, сахароза (обычный сахар) C 12 Н 22 О 11 является продуктом соединения остатков глюкозы и фруктозы за счет отщепления воды:




При гидролизе в кислотной среде сахароза вновь переходит в моносахариды:



Получившаяся смесь - инвертный сахар – содержится в мёде. При 200 °C сахароза, теряя воду, превращается в бурую массу (карамель).

Полисахариды – крахмал и целлюлоза (клетчатка) – продукты поликонденсации (межмолекулярной дегидратации) соответственно?– и?-форм глюкозы, их общая формула (С 6 Н 10 О 5) n . Степень полимеризации крахмала составляет 1000–6000, а целлюлозы 10 000-14 000. Целлюлоза – наиболее распространенное в природе органическое вещество (в древесине массовая доля целлюлозы доходит до 75 %). Крахмал (легче) и целлюлоза (труднее) подвергаются гидролизу (условия: H 2 SO 4 или НCl, > 100 °C); конечный продукт – глюкоза.

Большое практическое значение имеют сложные эфиры целлюлозы с уксусной кислотой:




Их используют в производстве искусственного ацетатного волокна и кинофотопленок.

Примеры заданий частей А, В

1-2. Для соединения с формулой

правильное название – это

1) 2-метилпропанол-2

2) 2,2-диметилэтанол

3) пропилэтиловый эфир

4) этилпропиловый эфир


3-4. Для соединения с формулой

правильное название – это

1) 1,1-диметилпропановая кислота

2) 3-метилбутановая кислота

3) 2-метилпропаналь

4) диметилэтаналь


5. Правильное название вещества CH 3 COOCH 2 CH 3 – это

1) метилацетат

2) этилацетат

3) метилформиат

4) этилформиат


6. Водородные связи образуются между молекулами соединений

3) уксусная кислота

4) ацетальдегид


7. Для состава С 4 Н 8 O 2 названия структурных изомеров из класса сложных эфиров – это

1) пропилформиат

2) диэтиловый эфир

3) этилацетат

4) метилпропионат


8-11. Формула соединения с названием

8. сахароза

9. крахмал

10. фруктоза

11. клетчатка

отвечает составу

1) С 6 Н 12 O 6

2) (С 6 Н 10 О 5) n

3) Cl 2 Н 22 О n


12. Для предельных одноатомных спиртов характерные реакции – это

1) гидролиз

2) гидратация

3) этерификация

4) дегидратация


13. Молекула конечного продукта реакции между фенолом и бромом в воде содержит общее число атомов всех элементов, равное


14-17. В уравнении реакции

14. окисления этанола оксидом меди (II)

15. бромирования фенола

16. межмолекулярной дегидратации этанола

17. нитрования фенола

сумма коэффициентов равна


18. В реакции этерификации группа ОН отщепляется от молекулы

2) альдегида

4) кислоты


19. С помощью хлорофилла в зеленом растении образуются

1) кислород

3) глюкоза


20-21. Химические свойства глюкозы, характерные для

20. спиртов

21. альдегидов

проявляются в реакции

1) спиртового брожения

2) «серебряного зеркала»

3) этерификации

4) нейтрализации


22-24. При нагревании с водой в присутствии H 2 SO 4 углевода

22. крахмал

23. целлюлоза

24. сахароза

после окончания гидролиза получают

2) фруктозу

3) глюконовую кислоту

4) глюкозу


25. Способы получения этанола – это

1) гидратация этена

2) брожение глюкозы

3) восстановление этаналя

4) окисление этаналя


26. Способы получения этиленгликоля – это

1) окисление этена

2) гидратация этена

3) действие щелочи на 1,2-С 2 Н 4 Cl 2

4) гидратация этина


27. Способы получения муравьиной кислоты – это

1) окисление метана

2) окисление фенола

3) окисление метанола

4) реакция СН 3 ОН с СО


28. Для синтеза уксусной кислоты используют соединения

1) С 2 Н 5 ОН


29. Метанол применяется в производстве

1) пластмасс

2) каучуков

3) бензинов

4) жиров и масел


30. Для распознавания фенола (в смеси с бутанолом-1) используют

1) индикатор и раствор щелочи

2) бромную воду

3) гидроксид меди (II)

4) аммиачный раствор оксида серебра (I)


31. Для распознавания в своих растворах глицерина, уксусной кислоты, ацетальдегида и глюкозы подходит один и тот же реактив

3) H 2 SO 4 (конц.)

4) Ag 2 O (в р-ре NH 3)


32. Органическое вещество – продукт гидратации ацетилена, которое вступает в реакцию «серебряного зеркала», а при восстановлении образует этанол, – это

1) ацетальдегид

2) уксусная кислота


33. Продукты А, Б, и В в схеме реакций СO 2 + Н 2 O > фотосинтез А > брожение – СO 2 Б > HCOOH B

– это соответственно

2) глюкоза

3) пропановая кислота

4) этилформиат


34. Фенол будет участвовать в процессах:

1) дегидратации

2) бромирования

3) изомеризации

4) нейтрализации

5) нитрования

6) «серебряного зеркала»


35. Возможно протекание реакций:

1) твердый жир + водород >…

2) муравьиная кислота + формальдегид >…

3) метанол + оксид меди (II) >…

4) сахароза + вода (в конц. H 2 SO 4) >…

5) метаналь + Ag 2 O (в р-ре NH 3) >…

6) этиленгликоль + NaOH (р-р) >…


36. Для промышленного синтеза фенолформальдегидной смолы следует взять набор реагентов

1) С 6 Н 6 , НС(Н)O

2) С 6 Н 6 , СН 3 С(Н)O

3) С 6 Н 5 ОН, НС(Н)O

4) С 6 Н 5 ОН, СН 3 С(Н)O

Образование галогеналканов при взаимодействии спиртов с галогеноводородами - обратимая реакция. Поэтому понятно, что спирты могут быть получены при гидролизе галогеналканов - реакции этих соединений с водой:

Многоатомные спирты можно получить при гидролизе галогеналканов, содержащих более одного атома галогена в молекуле. Например:

Гидратация алкенов

Гидратация алкенов - присоединение воды по π — связи молекулы алкена, например:

Гидратация пропена приводит в соответствии с правилом Марковникова к образованию вторичного спирта - пропанола-2:

Гидрирование альдегидов и кетонов

Окисление спиртов в мягких условиях приводит к образованию альдегидов или кетонов. Очевидно, что спирты могут быть получены при гидрировании (восстановлении водородом, присоединении водорода) альдегидов и кетонов:

Окисление алкенов

Гликоли, как уже отмечалось, могут быть получены при окислении алкенов водным раствором перманганата калия. Например, этиленгликоль (этандиол-1,2) образуется при окислении этилена (этена):

Специфические способы получения спиртов

1. Некоторые спирты получают характерными только для них способами. Так, метанол в промышленности получают реакцией взаимодействия водорода с оксидом углерода (II) (угарным газом) при повышенном давлении и высокой температуре на поверхности катализатора (оксида цинка):

Необходимую для этой реакции смесь угарного газа и водорода, называемую также «синтез-газ», получают при пропускании паров воды над раскаленным углем:

2. Брожение глюкозы . Этот способ получения этилового (винного) спирта известен человеку с древнейших времен:

Основными способами получения кислородсодержащих соединений (спиртов) являются: гидролиз галогеналканов, гидратация алкенов, гидрирование альдегидов и кетонов, окисление алкенов, а также получение метанола из «синтез-газа» и сбраживание сахаристых веществ.

Способы получения альдегидов и кетонов

1. Альдегиды и кетоны могут быть получены окислением или дегидрированием спиртов . При окислении или дегидрировании первичных спиртов могут быть получены альдегиды, а вторичных спиртов - кетоны:

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

2. Реакция Кучерова. Из ацетилена в результате реакции получается уксусный альдегид, из гомологов ацетилена - кетоны:

3. При нагревании кальциевых или бариевых солей карбоновых кислот образуются кетон и карбонат металла:

Способы получения карбоновых кислот

1. Карбоновые кислоты могут быть получены окислением первичных спиртов или альдегидов :

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 = 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

5CH 3 –CHO + 2KMnO 4 + 3H 2 SO 4 =5CH 3 –COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O,

3CH 3 –CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –COOH + Cr 2 (SO 4) 3 + K 2 SO 4 + 4H 2 O,

CH 3 –CHO + 2OH CH 3 –COONH 4 + 2Ag + 3NH 3 + H 2 O.

Но при окислении метаналя аммиачным раствором оксида серебра, образуется карбонат аммония, а не муравьиная кислота:

HCHО + 4OH = (NH 4) 2 CO 3 + 4Ag + 6NH 3 + 2H 2 O.

2. Ароматические карбоновые кислоты образуются при окислении гомологов бензола :

5C 6 H 5 –CH 3 + 6KMnO 4 + 9H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + 3K 2 SO 4 + 14H 2 O,

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 = 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O,

C 6 H 5 –CH 3 + 2KMnO 4 = C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O

3. Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Реакции этерификации и гидролиза, катализируемой кислотой, обратимы:

4. Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль:


Один из наиболее распространенных химических элементов, входящий в подавляющее большинство химических веществ - это кислород. Оксиды, кислоты, основания, спирты, фенолы и другие кислородсодержащие соединения изучаются в курсе неорганической и органической химии. В нашей статье мы изучим свойства, а также приведем примеры их применения в промышленности, сельском хозяйстве и медицине.

Оксиды

Наиболее простыми по строению являются бинарные соединения металлов и неметаллов с кислородом. Классификация оксидов включает следующие группы: кислотные, основные, амфотерные и безразличные. Главный критерий деления всех этих веществ заключается в том, какой элемент соединяется с кислородом. Если это металл, то они относятся к основным. Например: CuO, MgO, Na 2 O - окиси меди, магния, натрия. Их основное химическое свойство - это реакция с кислотами. Так, оксид меди реагирует с хлоридной кислотой:

CuO + 2HCl -> CuCl2 + H2O + 63, 3 кДж.

Присутствие атомов неметаллических элементов в молекулах бинарных соединений свидетельствует об их принадлежности к кислотным водорода H 2 O, углекислый газ CO 2 , пятиокись фосфора P 2 O 5 . Способность таких веществ реагировать со щелочами - главная их химическая характеристика.

В результате реакции могут образовываться видов: кислые или средние. Это будет зависеть от того, сколько моль щелочи вступает в реакцию:

  • CO2 + KOH => KHCO3;
  • CO2+ 2KOH => K2CO3 + H2O.

Еще одну группу кислородсодержащих соединений, в которые входят такие химические элементы, как цинк или алюминий, относят к амфотерным оксидам. В их свойствах прослеживается тенденция к химическому взаимодействию как с кислотами, так и со щелочами. Продуктами взаимодействия кислотных оксидов с водой являются кислоты. Например, в реакции серного ангидрида и воды образуется Кислоты - это один из наиболее важных классов кислородсодержащих соединений.

Кислоты и их свойства

Соединения, состоящие из водородных атомов, связанных со сложными ионами кислотных остатков - это кислоты. Условно их можно разделить на неорганические, например, карбонатную кислоту, сульфатную, нитратную, и органические соединения. К последним принадлежат уксусная кислота, муравьиная, олеиновая кислоты. Обе группы веществ имеют схожие свойства. Так, они вступают в реакцию нейтрализации с основаниями, реагируют с солями и основными оксидами. Практически все кислородсодержащие кислоты в водных растворах диссоциируют на ионы, являясь проводниками второго рода. Определить кислый характер их среды, обусловленной избыточным присутствием водородных ионов, можно с помощью индикаторов. Например, фиолетовый лакмус при добавлении его в раствор кислоты приобретает красную окраску. Типичным представителем органических соединений является уксусная кислота, содержащая карбоксильную группу. В нее входит атом водорода, который и обуславливает кислотные Это бесцветная жидкость со специфическим резким запахом, кристаллизующаяся при температуре ниже 17 °С. CH 3 COOH, как и другие кислородсодержащие кислоты, прекрасно растворяется в воде в любых пропорциях. Ее 3 - 5 % раствор известен в быту под названием уксуса, который используют в кулинарии как приправу. Вещество нашло свое применение также в производстве ацетатного шелка, красителей, пластических масс и некоторых лекарственных средств.

Органические соединения, содержащие кислород

В химии можно выделить большую группу веществ, содержащих, кроме углерода и водорода, еще и кислородные частицы. Это карбоновые кислоты, эфиры, альдегиды, спирты и фенолы. Все их химические свойства определяются присутствием в молекулах особых комплексов - функциональных групп. Например, спирта, содержащего только предельные связи между атомами - ROH, где R - углеводородный радикал. Эти соединения принято рассматривать как производные алканов, у которых один водородный атом замещен гидроксогруппой.

Физические и химические свойства спиртов

Агрегатное состояние спиртов - это жидкости или твердые соединения. Среди спиртов нет газообразных веществ, что можно объяснить образованием ассоциатов - групп, состоящих из нескольких молекул, соединенных слабыми водородными связями. Этим фактом определяется и хорошая растворимость низших спиртов в воде. Однако в водных растворах кислородсодержащие органические вещества - спирты, не диссоциируют на ионы, не изменяют цвет индикаторов, то есть имеют нейтральную реакцию. Атом водорода функциональной группы слабо связан с другими частицами, поэтому в химических взаимодействиях способен покидать пределы молекулы. По месту же свободной валентности происходит его замещение на другие атомы, например, в реакциях с активными металлами или со щелочами - на атомы металла. В присутствии катализаторов, таких, как платиновая сетка или медь, спирты окисляются энергичными окислителями - бихроматом или перманганатом калия, до альдегидов.

Реакция этерификации

Одно из важнейших химических свойств кислородсодержащих органических веществ: спиртов и кислот - это реакция, приводящая к получению сложных эфиров. Она имеет большое практическое значение и используется в промышленности для добывания эстеров, применяемых в качестве растворителей, в пищевой промышленности (в виде фруктовых эссенций). В медицине некоторые из эфиров применяют в качестве спазмолитиков, например, этилнитрит расширяет периферические кровеносные сосуды, а изоамилнитрит является протектором спазмов коронарных артерий. Уравнение реакции этерификации имеет следующий вид:

CH3COOH+C2H5OH<--(H2SO4)-->CH3COOC2H5+H2O

В ней CH 3 COOH - это уксусная кислота, а C 2 H 5 OH - химическая формула спирта этанола.

Альдегиды

Если соединение содержит функциональную группу -COH, то оно относится к альдегидам. Их представляют как продукты дальнейшего окисления спиртов, например, такими окислителями, как оксид меди.

Присутствие карбонильного комплекса в молекулах муравьиного или уксусного альдегида обуславливают их способность полимеризоваться и присоединять атомы других химических элементов. Качественными реакциями, с помощью которых можно доказать наличие карбонильной группы и принадлежность вещества к альдегидам, являются реакция серебряного зеркала и взаимодействие с гидроокисью меди при нагревании:

Наибольшее применение получил ацетальдегид, используемый в промышленности для получения уксусной кислоты - много тоннажного продукта органического синтеза.

Свойства кислородсодержащих органических соединений - карбоновых кислот

Наличие карбоксильной группы - одной или нескольких - это отличительная черта карбоновых кислот. Благодаря строению функциональной группы, в растворах кислот могут образовываться димеры. Они связаны между собой водородными связями. Соединения диссоциируют на катионы водорода и анионы кислотного остатка и являются слабыми электролитами. Исключением служит первый представитель ряда предельных одноосновных кислот - муравьиная, или метановая, являющаяся проводником второго рода средней силы. Присутствие в молекулах только простых сигма- связей говорит о предельности, если же вещества имеют в своем составе двойные пи-связи - это непредельные вещества. К первой группе относятся такие кислоты, как метановая, уксусная, масляная. Вторая представлена соединениями, входящими в состав жидких жиров - масел, например, олеиновой кислотой. Химические свойства кислородсодержащих соединений: органических и неорганических кислот во многом похожи. Так, они могут взаимодействовать с активными металлами, их оксидами, со щелочами, а также со спиртами. Например, уксусная кислота реагирует с натрием, оксидом и с образованием соли - ацетата натрия:

NaOH + CH3COOH→NaCH3COO + H2O

Особое место занимают соединения высших карбоновых кислородсодержащих кислот: стеариновой и пальмитиновой, с трехатомным предельным спиртом - глицерином. Они относятся к сложным эфирам и называются жирами. Эти же кислоты входят в состав солей натрия и калия в качестве кислотного остатка, образуя мыла.

Важные органические соединения, широко распространенные в живой природе и играющие ведущую роль в качестве наиболее энергоемкого вещества - это жиры. Они представляют собой не индивидуальное соединение, а смесь разнородных глицеридов. Это соединения предельного многоатомного спирта - глицерина, который, как и метанол и фенол, содержит гидроксильные функциональные группы. Жиры можно подвергнуть гидролизу - нагреванию с водой в присутствии катализаторов: щелочей, кислот, оксидов цинка, магния. Продуктами реакции будут глицерин и различные карбоновые кислоты, в дальнейшем используемые для производства мыла. Чтобы в этом процессе не использовать дорогостоящие природные необходимые карбоновые кислоты получают, окисляя парафин.

Фенолы

Заканчивая рассматривать классы кислородсодержащих соединений, остановимся на фенолах. Они представлены радикалом фенилом -C 6 H 5 , соединенным с одной или несколькими функциональными гидроксильными группами. Простейший представитель этого класса - карболовая кислота, или фенол. Как очень слабая кислота, он может взаимодействовать со щелочами и активными металлами - натрием, калием. Вещество с ярко выраженными бактерицидными свойствами - фенол применяется в медицине, в также при производстве красителей и фенолформальдегидных смол.

В нашей статье мы изучили основные классы кислородсодержащих соединений, а также рассмотрели их химические свойства.

Вам также будет интересно:

Воспаление придатков: причины, диагностика, лечение
Беспокоят тянущие или резкие боли внизу живота, нерегулярные месячные или их отсутствие,...
Болгарский красный сладкий перец: польза и вред
Сладкий (болгарский) перец – овощная культура, выращиваемая в средних и южных широтах. Овощ...
Тушеная капуста - калорийность
Белокочанная капуста - низкокалорийный овощ, и хотя в зависимости от способа тепловой...
Снежнянский городской методический кабинет
Отдел образования – это группа структурных подразделений: Аппарат: Начальник отдела...
Для чего нужны синонимы в жизни
Русский язык сложен для иностранцев, пытающихся ее выучить, по причине изобилия слов,...